
Overload Management as a Fundamental
Service Design Primitive

Matt Welsh and David Culler
Computer Science Division

University of California, Berkeley

{mdw,culler }@cs.berkeley.edu

Abstract
This position paper makes the case that overload management should
be a critical design goal for Internet-based systems and services. Few
Internet service designs take overload into account, treating the prob-
lem as one of capacity planning rather than engineering the service to
behave gracefully under extreme load. We argue that the right approach
to overload management is to explicitly signal overload conditions to
the application, allowing it to participate in resource management deci-
sions. Furthermore, we claim that feedback-driven control, rather than
static resource limits, should be the basis for detecting and controlling
overload. We present a feedback-driven approach to overload control
based on the staged event-driven architecture (SEDA) model for Inter-
net service design. This approach makes use of adaptive admission con-
trollers for meeting administrator-specified performance targets, such as
90th percentile response time. We demonstrate the use of these over-
load control mechanisms in two applications: a complex Web-based
e-mail service, and a dynamic Web server benchmark.

1 Introduction
In this position paper we argue that overload prevention is a
fundamental requirement for distributed systems and services
connected to the Internet. Unfortunately, few systems have
adequately addressed the management of extreme load, rely-
ing mainly on overprovisioning of resources (e.g., replication).
However, given the enormous user population on the Internet,
overprovisioning is infeasible as the peak load that a service ex-
periences may be orders of magnitude greater than the average.
The events of September 11, 2001 provided a poignant reminder
of the inability of Internet services to scale: virtually every Inter-
net news site was unavailable for several hours due to unprece-
dented demand [11]. The increasing prevalence of sophisticated
denial-of-service attacks, launched simultaneously from thou-
sands of unrelated machines, further underscores this problem.

Moreover, as our notion of Internet-based services expands to
embrace a range of novel distributed systems, including global
storage services [10, 20], peer-to-peer systems [6, 18], and sen-
sor networks [5, 8], throwing more resources at the problem does
not help: individual nodes in these large computing frameworks
are not necessarily backed by massive data centers which can
grow to meet capacity.

Despite the importance of load management, few systems di-
rectly address this problem, treating it as an issue of capacity

planning rather than preparing in advance for (inevitable) over-
load. Web servers, clustered middle-tier systems, databases, di-
rectory services, and file servers all require some form of over-
load management, though few deployed systems are architected
to take this problem into account. To a large extent, this is due
to inadequate interfaces for resource management. Most operat-
ing systems adhere to the principle ofresource virtualizationto
simplify application development. Unfortunately, this approach
makes it difficult for applications to be aware of, or adapt to,
real resource limitations [24]. For example, the UNIXmalloc
interface simply returns NULL when memory cannot be allo-
cated; an application has no way to know whether a futuremal-
loc operation will fail, so adapting to memory pressure is nearly
impossible.

The programming models used for Internet services gener-
ally fail to express resource constraints in a meaningful way.
CORBA [15], RPC [21], Java RMI [22], and now .NET [19]
all expose a programming model in which distributed compo-
nents communicate mainly through remote procedure call, sim-
plifying the harnessing of remote resources through a familiar
programming abstraction. Unfortunately this abstraction makes
no attempt at exposing resource limits or overload conditions to
the participating applications. For example, Java RMI calls can
throw a generic exception due to any type of failure, but there
is typically little that an RMI application can do when this oc-
curs: should the application fail, retry the operation, or invoke
an alternate interface?

This problem is compounded when Internet services are con-
structed through composition of many distributed systems, as is
the case with the emergent field of “Web services.” Consider a
Web service consisting of several independent components com-
municating through a common protocol such as SOAP. When
one component becomes a resource bottleneck, the only over-
load management technique generally used is for the service to
refuse additional TCP connections. While effectively shield-
ing that service from load, other participants experience very
long connection delays (e.g., due to TCP’s exponential SYN re-
transmit backoff behavior), causing the bottleneck to propagate
through the entire distributed application.

This paper outlines a framework for building Internet services
that are inherently robust to load, using two simple techniques:
dynamic resource management and fine-grained admission con-
trol. While these techniques have been explored elsewhere in the



context of specific applications, we find that few Internet service
programming models make them explicit. Our approach is based
on a software architecture called thestaged event-driven archi-
tecture(or SEDA), which decomposes an Internet service into
a network of event-driven stages connected with explicit event
queues. Load management in SEDA is accomplished by intro-
ducing a feedback loop that observes the behavior and perfor-
mance of each stage, and applies resource control and admission
control to effectively manage overload.

Our previous work on SEDA [25] focused primarily on the
efficiency and scalability of this architecture with respect to tra-
ditional concurrent server designs. In this paper, we build on
the SEDA framework by introducing adaptive overload con-
trol mechanisms and discussing the impact of overload control
on the SEDA programming model. We report our experiences
with several approaches for overload management in SEDA, and
present initial results showing the effectiveness of these tech-
niques in a complex Web-based email service.

2 The Need for Dynamic Overload Management
The classic approach to resource management in Internet ser-
vices is static resource containment, in whicha priori resource
limits are imposed on an application or service to avoid over-
commitment. Various kinds of resource limits are used: bound-
ing the number of processes or threads within a server is a
common technique, as is limiting the number of client socket
connections to the service. Both of these approaches have the
fundamental problem that it is generally not possible to know
what the ideal resource limits should be. Setting the limit too
low underutilizes resources, while setting the limit too high can
lead to oversaturation and serious performance degradation un-
der overload. Refusing to accept additional TCP connections
under heavy load is inadvisable as it causes clients to retrans-
mit the initial SYN packet with exponential backoff, leading to
very long response times [25]. This approach is also too coarse-
grained in the sense that even a single client can consume all of
the resources in the system; imposing process or connection lim-
its does not solve the more general resource management issue.

Another style of resource containment is that typified by a
variety of real-time and multimedia systems. In this approach,
resource limits are typically expressed as reservations or shares,
as in “processP getsX percent of the CPU.” In this model,
the operating system must be careful to account for and con-
trol the resource usage of each process. Applications are given
a set of resource guarantees, and the system prevents guaran-
tees from being exceeded through scheduling or forced termi-
nation. Though resource allocations may change over time, the
system does not typically use any feedback on application per-
formance when determining allocations. One important excep-
tion is feedback-driven scheduling [13], in which application
performance is used to tune scheduling parameters.

Reservation- and share-based resource limits have been ex-
plored in depth by systems such as Scout [14], Nemesis [12],
Resource Containers [3], and Cluster Reserves [2]. These tech-
niques work well for real-time and multimedia applications,
which have relatively static resource demands that can be ex-
pressed as straightforward, fixed limits. For this class of ap-

plications, guaranteeing resource availability is more important
than ensuring high concurrency for a large number of varied re-
quests in the system. Moreover, these systems are focused on
resource allocation to processes or sessions, which are fairly
coarse-grained entities. In an Internet service, the focus is on
individual requests, for which it is permissible (and often desir-
able) to meet statistical performance targets over a large number
of requests, rather than to enforce guarantees for particular re-
quests.

We argue that the right approach to overload management in
Internet services is feedback-driven control, in which the sys-
tem actively observes its behavior and performance, and applies
dynamic control to manage resources. Several systems have ex-
plored the use of dynamic overload management in Internet ser-
vices. Voigtet al. [23] and Jamjoom [9] present approaches en-
ablingservice differentiationin busy Internet servers: the basic
idea is to adjust the priority or admission control parameters for
each class of requests to yield higher performance for more im-
portant requests. In [23], the kernel adjusts process priorities to
meet per-class response time targets. When the system is over-
loaded, processes are blocked and eventually new connections
are refused. In [9], per-class admission control is performed by
traffic shaping the incoming SYN queue for new connections.
The latter technique is limited to classification by client IP ad-
dress, while the former rapidly accepts incoming TCP connec-
tions permitting classification by HTTP header information.

These mechanisms are approaching the kind of overload
management techniques we would like to see in Internet ser-
vices, yet they are inflexible in that the application itself is not
designed to manage overload. Rather, overload management is
provided as an OS function with generic load shedding tech-
niques (e.g., blocking processes or rejecting connections) rather
than application-specific service degradation. Also, these mech-
anisms are “wrapped around” existing applications rather than
pushing overload control into the application design, where we
argue it belongs.

3 SEDA: Making Overload Management
Explicit

We have been experimenting with a new software design, the
staged event-driven architecture(or SEDA), which is designed
to provide adequate primitives for managing load in busy Inter-
net services. In SEDA, applications are structured as a graph
of event-drivenstagesconnected with explicitevent queues, as
shown in Figure 1. We provide a brief overview of the architec-
ture here; a more complete description is given in [25].

3.1 SEDA Overview
SEDA is intended to support the massive concurrency demands
of large-scale Internet services, as well as to exhibit good be-
havior under heavy load. Traditional server designs rely on pro-
cesses or threads to capture the concurrency needs of the server
— a common design is to devote a thread to each client connec-
tion. However, general-purpose threads are unable to scale to
the large numbers required by busy Internet services [4, 7, 16].
SEDA makes use of efficient event-driven concurrency, in which
a small number of threads are used to process many simultane-



...

packet
parse

connection
accept

read
packet

handle
misscache

check

SSL/TLS
processing

file
I/O

write
packet

folders
list

show
message

message
delete/refile

send
response

static pages
(some stages not shown)

admission control
for dynamic pages

Figure 1:Structure of the Arashi SEDA-based email service:The service consists of a network of stages connected with explicit event queues,
coupled with adaptive resource and admission control to prevent overload. For simplicity, some event paths and stages have been elided from this
figure.

ous requests. This requires that request-processing operations
be nonblocking, avoiding the need to devote a large number of
threads to blocking I/O operations.

Event-driven server designs can often be very complex, re-
quiring application-specific request scheduling, often result-
ing in labyrinthine application code. Also, the requirement
the request-processing logic never block is difficult to achieve
in practice, especially if legacy code is incorporated into the
service. To counter the complexity of the monolithic event-
driven approach, SEDA decomposes a service into a graph of
stages, where each stage is internally event-driven and contains a
dynamically-sized thread pool to drive its execution. This allows
event processing within a stage (and across stages) to proceed in
parallel, and permits application code to block for short periods
of time. Additionally, the complexity of managing concurrency
is significantly reduced, as each stage is responsible only for a
subset of request processing, and stages are isolated from others
through composition with queues.

While conceptually simple, the SEDA model has a number
of desirable properties for overload management:

• Exposure of the request stream:Event queues make the
request stream within the service explicit, allowing the
application (and the underlying runtime environment) to
observe and control the performance of the system, e.g.,
through reordering or filtering of requests.

• Focused, application-specific admission control:By ap-
plying fine-grained admission control to each stage, the
system can avoid bottlenecks in a focused manner. For ex-
ample, a stage that consumes many resources can be con-
ditioned to load by throttling the rate at which events are
admitted to just that stage, rather than refusing all new re-
quests in a generic fashion. The application can provide its
own admission control algorithms that are tailored for the
particular service.

• Performance isolation: Requiring stages to communicate
through explicit event-passing allows each stage to be insu-
lated from others in the system for purposes of code modu-
larity and performance isolation.

In SEDA, each stage is subject to dynamic resource control,
which attempts to keep each stage within its ideal operating
regime by tuning parameters of the stage’s operation. For ex-
ample, one such controller adjusts the number of threads exe-
cuting within each stage based on an observation of the stage’s
offered load (incoming queue length) and performance (through-
put). This approach frees the application programmer from man-
ually setting “knobs” that can have a serious impact on perfor-
mance. More details on resource control in SEDA are given
in [25].

Each stage has an associated admission controller that guards
access to the event queue for that stage. The admission con-
troller is invoked upon each enqueue operation on a stage and
may either accept or reject the given request. Numerous admis-
sion control strategies are possible, such as simple thresholding,
rate limiting, or class-based prioritization. Additionally, the ap-
plication may specify its own admission control policy if it has
special knowledge that can drive the load conditioning decision.

When the admission controller rejects a request, the corre-
sponding enqueue operation fails, indicating to the originating
stage that there is a bottleneck in the system. Applications are
therefore responsible for reacting to these “overload signals” in
some way. The simplest response is to block until the down-
stream stage can accept the request, which leads to backpressure
within the graph of stages. Another response is to drop the re-
quest, possibly sending an error message to the client or using
the HTTP redirect mechanism to bounce the request to another
server. More generally, SEDA applications candegrade service
in response to overload, such as delivering lower-quality con-
tent or choosing to consume fewer resources per request. The
key is that the architecture is explicit about signaling overload
conditions and allows the application to participate in load man-
agement decisions.

4 Adaptive Admission Control in SEDA
The use of per-stage admission control in SEDA allows appli-
cations to be conditioned to load in a focused manner. For ex-
ample, the flow of requests into stage that are the source of a
resource bottleneck can be throttled. In this section we describe
an adaptive, per-stage admission control technique that attempts
to bound the 90th percentile response time of requests flowing



Controller

λ

Target
RT

Stage

Distribution

Thread Pool

Response
Time Monitor

Token
Bucket Rate

Figure 2:Response time controller design:The controller observes
a history of response times through the stage, and adjusts the rate at
which the stage accepts new requests to meet an administrator-specified
90th-percentile response time target.

through the graph of stages. We also discuss the use of ser-
vice degradation and differentiation across multiple classes of
requests.

4.1 Performance metrics
A variety of performance metrics have been studied in the
context of overload management, including throughput and re-
sponse time targets, differentiated service (e.g., the fraction of
users in each class that meet a given performance target), and
so forth. We focus here on90th percentile response timeas a
realistic and intuitive measure of client-perceived system perfor-
mance. This metric has the benefit that it is both easy to reason
about and captures administrators’ (and users’) intuition of In-
ternet service performance. This is as opposed to average or
maximum response time (which fail to represent the “shape” of
a response time curve), or throughput (which depends greatly
on the user’s connection to the service and has little relationship
with user-perceived performance).

In this context, the system administrator would specify a tar-
get value for the 90th percentile response time exhibited by re-
quests flowing through the service. The target value may be
parameterized by relative utility of each request, for example,
based on request type or user classification. An example might
be to specify a lower response time target for requests from
users with more items in their shopping cart. Our current imple-
mentation allows separate response time targets to be specified
for each stage in the service, as well as for different classes of
users (based on IP address, request header information, or HTTP
cookies).

4.2 Response time controller design
The design of the per-stage overload controller in SEDA is
shown in Figure 2. The controller consists of several com-
ponents. Amonitor measures response times for each request
passing through a stage. The measured 90th percentile response
time over some interval is passed to thecontrollerwhich adjusts
the admission control parametersbased on the administrator-
supplied response-timetarget. In the current design, the con-
troller adjusts the rate at which new requests are admitted into
the stage’s queue by adjusting the rate at which new tokens are
generated in a token bucket traffic shaper.

Due to space limitations we present a brief overview of
the overload controller implementation. The basic overload
control algorithm makes use of additive-increase/multiplicative-
decrease tuning of the token bucket rate based on the current
observation of the 90th percentile response time. The overload
controller is implemented as a function invoked by the stage’s
event-processing thread after some number of requests has been
processed. This implies that the overload controller will not run
when the token bucket rate is low; the algorithm therefore “times
out” and performs a recalculation of the 90th percentile response
time after a certain interval. When the 90th percentile response
time estimate is above a high-water mark (e.g., 10% above the
administrator-specified target), the token bucket rate is reduced
by a multiplicative factor (e.g., dividing the admission rate by 2).
When the estimate is below a low-water mark, the token bucket
rate is increased by a small additive factor. The rate increase is
proportional to the difference between the current response time
estimate and the target; a larger error leads to a greater increase
in the admission rate.

4.3 Service degradation and differentiation
In addition to the basic response-time controller, we have imple-
mented mechanisms permitting applications to degrade service
under load, as well as to provide differentiated levels of service
based on the type of request or user class. A complete discussion
of these mechanisms is beyond the scope of this paper, though
we touch on them briefly here.

Rather than rejecting requests, SEDA applications may de-
grade the quality of delivered service in order to admit a larger
number of requests given a response-time target. SEDA itself
does not implement service degradation mechanisms, but rather
signals overload to applications in a way that allows them to de-
grade if possible. SEDA allows application code to obtain the
current 90th percentile response time estimate from the over-
load controller, as well as to enable or disable the admission
control mechanism for a given stage. This allows an application
to implement degradation by periodically sampling the current
response time estimate and comparing it to the administrator-
specified target. If service degradation is ineffective (say, be-
cause the load is too high to support even the lowest quality set-
ting), the stage can re-enable admission control to cause requests
to be rejected.

Likewise, by prioritizing requests from certain users over oth-
ers, a SEDA application can implement various policies related
to class-based service level agreements. A common example is
to give better service to requests from “gold” customers (who
might pay more money for the offered service). Building on the
basic response time controller described above, We have imple-
mented service differentiation in SEDA using a controller that
more aggressively rejects lower-class requests than higher-class
requests when a stage is overloaded.

5 Evaluation
In this section we evaluate the overload controllers using two
SEDA applications: a Web-based interface to email, and a Web
server benchmark that is able to degrade service under heavy
load.



0

20

40

60

80

100

120

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e 

(s
ec

)

R
ej

ec
t r

at
e

Time (5 sec intervals)

Load spike
(1000 users) Load spike ends

No overload control
With overload control
Reject rate

Figure 3:Overload control under a massive load spike:This figure
shows the 90th percentile response time experienced by clients using the
Arashi e-mail service under a massive load spike (from 10 users to 1000
users). Without overload control, response times grow without bound;
with overload control (using a 90th percentile response time target of 1
second), there is a small increase during load but response times quickly
stabilize. The lower portion of the figure shows the fraction of requests
rejected by the overload controller.

5.1 Arashi: A SEDA-based e-mail service
Arashi is a complex, Web-based email application that is akin to
Hotmail or Yahoo! Mail, allowing users to access email through
a Web browser interface with various functions: managing email
folders, deleting and refiling messages, searching for messages,
and so forth. Arashi (shown in Figure 1) is built as a SEDA
application consisting of 16 stages, each stage handling some
aspect of request processing such as HTTP parsing, disk I/O, or
dynamic page generation. Email is stored in a MySQL database
which runs on the same machine as the Arashi SEDA service;
in this way, Arashi’s admission control mechanisms effectively
condition load on the database. Simulated clients generate load
against the Arashi service using a realistic request distribution
based on traces from the Berkeley departmental IMAP server.

Response-time-driven overload control is applied to each of
the six stages that perform dynamic page processing. These
stages are the bottleneck in the system as they perform database
access and HTML page generation; the other stages are rela-
tively lightweight. Each stage corresponds to one type of user
request (login, listing folders, listing messages, showing a mes-
sage, deleting/refiling messages and folders, and searching mes-
sage headers). When the admission controller rejects a request,
the HTTP processing stage sends an error message to the client
indicating that the service is busy. The client records the error
and waits for 5 seconds before attempting to login to the service
again.

Figure 3 shows the performance of the overload controller
under a massive load spike on the Arashi e-mail service. A base
load of 10 users is rapidly accessing the service when a “flash
crowd” of 1000 additional users arrive. Without overload con-
trol, client-measured response times grow to be very large. The
overload controller maintains a 90th percentile response time
target of 1 second, rejecting about 70% to 80% of requests dur-

ing the spike. Without overload control, there is an enormous
increase in response times during the load spike, making the ser-
vice effectively unusable for all users.

This is in contrast to the common approach of limiting the
number of client TCP connections to the service, which does
not actively monitor response times (a small number of clients
could cause a large response time spike), nor give users any in-
dication of overload. In fact, refusing TCP connections has a
negative impact on user-perceived response time, as the client’s
TCP stack transparently retries connection requests with expo-
nential backoff.

We claim that giving 20% of the users good service and 80%
of the users some indication that the site is overloaded is bet-
ter than givingall users unacceptable service. However, this
comes down to a question of what policy a service wants to
adopt for managing heavy load. Recall once more that the ser-
vice need not reject requests outright — it could redirect them to
another server, degrade service, or perform an alternate action.
The SEDA design allows a wide range of policies to be imple-
mented, using per-stage admission control as a load management
primitive.

5.2 Service degradation experiments
As discussed previously, SEDA applications can respond to
overload by degrading the fidelity of the service offered to
clients. This technique can be combined with admission con-
trol, for example, by rejecting requests when the lowest service
quality still leads to overload.

To demonstrate the use of service degradation in SEDA, we
use a simple Web server that responds to each request with a
dynamically-generated HTML page that requires significant re-
sources to generate. A single stage acts as a bottleneck in this
service; for each request, the stage reads a varying amount of
data from a file, computes checksums on the file data, and pro-
duces a dynamically-generated HTML page in response. The
stage has an associatedquality factor that controls the amount
of data read from the file and the number of checksums com-
puted. By reducing the quality factor, the stage consumes fewer
resources, but provides “lower quality” service to clients.

Using the overload control interfaces in SEDA, the stage
monitors its own 90th percentile response time and reduces the
quality factor when it is over the administrator-specified limit.
Likewise, the quality factor is increased slowly when the re-
sponse time is below the limit. Service degradation may be per-
formed either independently or in conjunction with the response-
time admission controller described above. If degradation is
used alone, then under overload all clients are given service but
at a reduced quality level. In extreme cases, however, the lowest
quality setting may still lead to very large response times. The
stage may optionally re-enable the admission controller when
the quality factor is at its lowest setting and response times con-
tinue to exceed the target.

Figure 4 shows the effect of service degradation under an ex-
treme load spike, both with and without the aid of admission
control. As the figure shows, service degradation alone does a
fair job of managing overload, though re-enabling the admission
controller under heavy load is much more effective. Note that



0

10

20

30

40

50

60

70

80

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e 

(s
ec

)

Q
ua

lit
y 

/ R
ej

ec
t r

at
e

Time (5 sec intervals)

Load spike Load spike ends

No overload control
With degradation
Service quality

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e 

(s
ec

)

Q
ua

lit
y 

/ R
ej

ec
t r

at
e

Time (5 sec intervals)

Load spike Load spike ends

No overload control
Degrade + Reject
Service quality
Reject rate

(a) Using service degradation (b) Using service degradation and admission control

Figure 4:Effect of service degradation vs. admission control:This figure shows the 90th percentile response time experienced by clients accessing
a simple service consisting of a single bottleneck stage. The stage is capable of reducing the quality of service delivered to clients in order to meet
response time demands. Here, the 90th percentile response time target is set to 5 seconds. With no degradation or admission control, response times
grow large under a massive load spike of 1000 users. Service degradation alone does a fair job of meeting the response time target under overload,
though service degradation coupled with admission control is much more effective.

when admission control is used, a very large fraction (99%) of
the requests are rejected; this is due to the extreme nature of the
load spike and the inability of the bottleneck stage to meet the
performance target, even at a degraded level of service.

6 Conclusions and Future Directions
This position paper has argued that it is critically important to
address the problem of overload from an Internet service de-
sign perspective, rather than throughad hocapproaches lashed
onto existing systems. Rather than static resource partitioning
or prioritization, we claim that the right way to approach over-
load management is to use feedback and dynamic control. This
approach is more flexible, less prone to underutilization of re-
sources, and avoids the use of static “knobs” that can be difficult
for a system administrator to tune. In our approach, the admin-
istrator specifies only high-level performance targets which are
met by feedback-driven controllers.

We also argue that it is necessary to expose overload to the
application, rather than hiding load management decisions in
an underlying OS or runtime system. Application awareness
of overload conditions allows the service to make informed re-
source management decisions, such as degrading the quality of
service. In the SEDA model, overload is exposed to applica-
tions through explicit signals in the form of cross-stage enqueue
failures. Our initial results with this design, as well as consid-
erable scalability and robustness measurements presented else-
where [25], support the claim that the SEDA approach is an ef-
fective way to build robust Internet services.

A wide range of open questions remain in the Internet ser-
vice design space. We feel that the most important issues have
to do with robustness and management of heavy load, rather than
raw performance, which has been much of the research commu-
nity’s focus up to this point. Some of the interesting research
challenges raised by the SEDA design are outlined below.

User-level versus kernel-level load management:An inter-
esting aspect of SEDA is that it is purely a “user level” mech-
anism, acting as a resource management middleware sitting be-
tween applications and the underlying operating system. How-
ever, if given the opportunity to design an OS for scalable Inter-
net services, many interesting ideas could be investigated, such
as scalable I/O primitives, SEDA-aware thread scheduling, and
application-specific resource management.

Design and tuning of control mechanisms: Introducing
feedback as a mechanism for overload control raises a number
of questions. For example, how should controller parameters be
tuned? We have relied mainly on a heuristic approach to con-
troller design, though more formal, control-theoretic techniques
are possible [17]. Control theory provides a valuable framework
for designing and evaluating feedback-driven systems, though
many of the traditional techniques rely upon good mathematical
models of system behavior, which are often unavailable for com-
plex software systems. The interaction between multiple levels
of control in the system — for example, the interplay between
queue admission control and tuning per-stage thread pool sizes
— is also largely unexplored.

Composition rules for service components: The presence
of an expressive interface for overload management raises the
larger question of how to use this mechanism across large appli-
cations. Within a SEDA application, stages may independently
shed load by rejecting enqueue operations; stages must there-
fore be defensive with respect to generating load for downstream
stages. An interesting design issue arises with respect to com-
posing stages each with their own load-shedding policy. Can any
two stages be directly composed, or do some forms of overload
control preclude direct communication between stages? Further
research might yield a set of composition rules that mandate the
interactions between admission-controlled service components.



Overload management as part of the Internet infrastruc-
ture: Finally, we hope that future distributed systems devel-
opers consider overload as an important design consideration,
rather than as only a question of resource provisioning. While
current distributed programming models, such as RPC, fail to
expose overload, novel application domains such as overlay net-
works [1] and peer-to-peer systems [10] have the opportunity to
rethink this approach. Doing so will hopefully lead to an In-
ternet infrastructure that is more robust to extreme variance of
demand.

References
[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Mor-

ris. Resilient overlay networks. InProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP 2001), Banff,
Canada, October 2001.

[2] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves:
A mechanism for resource management in cluster-based network
servers. InProceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Santa Clara,
CA, June 2000.

[3] G. Banga, P. Druschel, and J. Mogul. Resource containers: A
new facility for resource management in server systems. InProc.
Third Symposium on Operating Systems Design and Implementa-
tion (OSDI ’99), February 1999.

[4] G. Banga, J. C. Mogul, and P. Druschel. A scalable and explicit
event delivery mechanism for UNIX. InProc. USENIX 1999 An-
nual Technical Conference, Monterey, CA, June 1999.

[5] A. Cerpa and D. Estrin. ASCENT: Adaptive self-configuring sen-
sor networks topologies. InProceedings of the Twenty First In-
ternational Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2002), New York, NY,
June 2002.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. InProceedings of
the 18th Symposium on Operating Systems Princples (SOSP-18),
Chateau Lake Louise, Canada, October 2001.

[7] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scal-
able, distributed data structures for Internet service construction.
In Proc. Fourth Symposium on Operating System Design and Im-
plementation (OSDI 2000), October 2000.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for network sensors. InProceed-
ings of ASPLOS 2000, Cambridge, MA, November 2000.

[9] H. Jamjoom and J. Reumann. QGuard: Protecting Internet servers
from overload. Technical Report CSE-TR-427-00, University
of Michigan Department of Computer Science and Engineering,
2000.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for global-
scale persistent storage. InProceeedings of the Ninth inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), November
2000.

[11] W. LeFebvre. CNN.com: Facing a world crisis. Invited talk at
LISA’01, December 2001.

[12] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden. The design and implementation of an
operating system to support distributed multimedia applications.
IEEE Journal on Selected Areas in Communications, 14:1280–
1297, September 1996.

[13] C. Lu, J. Stankovic, G. Tao, and S. Son. Design and evaluation
of a feedback control EDF algorithm. InProceedings of the 20th
IEEE Real-Time Systems Symposium, Phoenix, Arizona, Decem-
ber 1999.

[14] D. Mosberger and L. Peterson. Making paths explicit in the Scout
operating system. InProc. OSDI ’96, October 1996.

[15] Open Management Group. The Common Object Request Broker:
Architecture and specification, revision 2.3, June 1999.

[16] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient
and portable Web server. InProc. 1999 Annual Usenix Technical
Conference, June 1999.

[17] S. Parekh, N. Gandhi, J. L. Hellerstein, D. Tilbury, T. Jayram,
and J. Bigus. Using control theory to achieve service level ob-
jectives in performance management. InProc. IFIP/IEEE Inter-
national Symposium on Integrated Network Management, Seattle,
WA, May 2001.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. InProceedings of ACM
SIGCOMM 2001, San Diego, CA, August 2001.

[19] J. Richter.Applied Microsoft .NET Framework Programming. Mi-
crosoft Press, 2002.

[20] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proceedings of the 18th Symposium on Operating Systems Princ-
ples (SOSP-18), Chateau Lake Louise, Canada, October 2001.

[21] Sun Microsystems. RPC: Remote Procedure Call Protocol Spec-
ification Version 2. Internet Network Working Group RFC1057,
June 1988.

[22] Sun Microsystems, Inc. Java Remote Method Invocation.http:
//java.sun.com/products/jdk/rmi/ .

[23] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mech-
anisms for service differentiation in overloaded web servers. In
Proceedings of the 2001 USENIX Annual Technical Conference,
Boston, MA, June 2001.

[24] M. Welsh and D. Culler. Virtualization considered harmful: OS
design directions for well-conditioned services. InProceedings of
the Eighth Workshop on Hot Topics in Operating Systems (HotOS-
VIII) .

[25] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable Internet services. InProceedings of
the 18th Symposium on Operating Systems Princples (SOSP-18),
Chateau Lake Louise, Canada, October 2001.


