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Abstract

Fast Ethernet and ATM are two attractive network technologies for interconnecting workstation clusters for parallel and
distributed computing. This paper compares network interfaces with and without programmable co-processors for the two
types of networks using the U-Net communication architecture to provide low-latency and high-bandwidth communication.
U-Net provides protected, user-level access to the network interface and offers application-level round-trip latencies as low
as 60µsec over Fast Ethernet and 90µsec over ATM.

The design of the network interface and the underlying network fabric have a large bearing on the U-Net design and per-
formance. Network interfaces with programmable co-processors can transfer data directly to and from user space while oth-
ers require aid from the operating system kernel. The paper provides detailed performance analysis of U-Net for Fast
Ethernet and ATM, including application-level performance on a set of Split-C parallel benchmarks. These results show that
high-performance computing is possible on a network of PCs connected via Fast Ethernet.

1 Introduction

High-performance computing on clusters of worksta-
tions requires low-latency communication to efficiently
implement parallel languages and distributed algorithms.
Recent research [3, 8, 16] has demonstrated that direct
application access to the network interface can provide
both low-latency and high-bandwidth communication over
commodity networks such as 155Mbps ATM and
100Base-TX Fast Ethernet. This paper presents two imple-
mentations of U-Net, a user-level network architecture
employing off-the-shelf hardware, and compares their
architectural properties and performance over ATM and
Fast Ethernet.

U-Net circumvents the traditional UNIX networking
architecture by providing applications with a simple mech-
anism to access the network device as directly as the
underlying hardware permits. This shifts most of the pro-
tocol processing to user-level where it can often be spe-
cialized and better integrated into the application thus
yielding higher performance. Protection is ensured
through the virtual memory system and through kernel
control of connection set-up and tear-down.

A previous implementation of U-Net over ATM[16]
demonstrated that this architecture is able to efficiently
support low-latency communication protocols such as
Active Messages[17] for use as a workstation cluster inter-
connect for parallel computing. Split-C[5], a state-of-the-
art parallel language, has been implemented using Active

Messages over U-Net and, on a cluster of SPARCStations
connected via ATM, shows performance comparable to
MPPs such as the CM-5 and the Meiko CS-2. Recently a
Fast Ethernet implementation [19] demonstrated that U-
Net can be implemented efficiently over a network sub-
strate other than ATM. U-Net over Fast Ethernet uses a
substantially simpler network interface than the ATM
implementation. This paper compares the two implemen-
tations and discusses the impact of the architectural differ-
ences on the software layers.

2 Motivation and Related Work
The U-Net architecture provides applications with direct

access to the network interface without compromising pro-
tection. This allows protocol processing to be moved to
user space and customized for specific applications. The
intent is twofold:
• to reduce send and receive overheads for messaging so

that the low latencies and high bandwidths required for
cluster computing can be achieved, even with small
message sizes; and

• to bring down the cost of workstation clusters through
the use of inexpensive personal computers and a com-
modity interconnection network such as Fast Ethernet.
The U-Net architecture emphasizes low communication

overheads because small messages are becoming increas-
ingly important in a multitude of settings:
• in parallel programming languages where the granular-

ity of remote accesses is often small and cannot easily
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be overlapped with unrelated computation, and which
make abundant use of synchronization primitives (such
as locks) where latency is critical;

• in object-oriented systems where objects may be distrib-
uted across the network and method invocations (involv-
ing small messages) may need to cross machine
boundaries;

• for software fault-tolerance protocols (establishing con-
sistent views of a distributed system among its mem-
bers) which often require multiple rounds of small-
message passing; and

• in network file systems in which the vast majority of
messages are small (less than 200 bytes) in size.

2.1 The Case for Fast Ethernet

The initial implementation of U-Net over 140Mbps
ATM (U-Net/ATM) demonstrated that low-latency com-
munication for cluster computing is indeed possible using
off-the-shelf hardware. Two important outstanding ques-
tions were whether the U-Net model is only feasible over
connection-oriented networks such as ATM and whether
the use of a programmable co-processor on the network
adapter in the ATM implementation is a necessary part of
the design.

The implementation of U-Net over Fast Ethernet (U-
Net/FE) [19] explores the use of Fast Ethernet as an alter-
native to ATM. It shows that the U-Net design itself does
not depend upon specific features of ATM networks or on
the use of a programmable co-processor on the network
interface. Fast Ethernet has a number of technical and cost
advantages over ATM. First, Fast Ethernet is a mature
technology with well-known standards (the basic design
remains that of the original 10Mbps Ethernet system) and
products are widely available. Second, network adapters,
cabling, hubs, and switches for 100Mbps Fast Ethernet are
significantly less expensive than their ATM counterparts.
As an example, high-end ATM network interfaces gener-
ally cost five to ten times more than high-end Fast Ethernet
adapters with similar features.

The lower cost of Fast Ethernet is primarily due to two
factors: volume and simplicity. The seamless integration
of Fast Ethernet into legacy networks creates a high-vol-
ume market and makes it far more attractive than ATM,
which can be difficult to integrate into existing networks.
In addition, the cell segmentation and reassembly process
required in ATM is more costly to implement than the sim-
pler DMA block transfers which suffice for Fast Ethernet.

2.2 Related Work

User-level networking issues have been studied in a
number of recent projects. Several of these models pro-
pose to introduce special-purpose networking hardware.

Thekkath[14] proposes to separate the control and data
flow of network access using a shared-memory model;
remote-memory operations are implemented as unused
opcodes in the MIPS instruction set.

The Illinois Fast Messages[12] achieve high perfor-
mance on a Myrinet network using communication primi-
tives similar to Active Messages. The network interface is
accessed directly from user-space but does not provide
support for simultaneous use by multiple applications.

The HP Hamlyn[20] network architecture also imple-
ments a user-level communication model similar to Active
Messages but uses a custom network interface where mes-
sage sends and receives are implemented in hardware.

Shrimp[3] allows processes to connect virtual memory
pages on two nodes through the use of custom network
interfaces; memory accesses to such pages on one side are
automatically mirrored on the other side.

The ParaStation[18] system obtains small-message (4-
byte) send and receive processor overheads of about
2.5µsec using specialized hardware and user-level unpro-
tected access to the network interface. The Beowulf[2]
project has constructed a workstation cluster consisting of
Pentium systems connected via Fast Ethernet. Each sys-
tem consists of two Fast Ethernet controllers operating in a
round-robin fashion to double the aggregate bandwidth per
node. This project employs the same network hardware
and operating system as U-Net/FE, however, all network
access is through the kernel sockets interface.

Similarly, the Berkeley Network-of-Workstations[1]
project aims to form large-scale distributed and parallel
computing systems out of off-the-shelf components, con-
nected via FDDI or Myrinet.

3 U-Net communication architecture
The U-Net architecture virtualizes the network interface

in such a way that a combination of operating system and
hardware mechanisms can provide every application the
illusion of owning the interface to the network. Depending
on the sophistication of the actual hardware, the U-Net
components manipulated by a process may correspond to
real hardware in the NI, to software data structures that are
interpreted by the OS, or to a combination of the two. The
role of U-Net is limited to multiplexing the actual NI
among all processes accessing the network and enforcing
protection boundaries. In particular, an application has
control over both the contents of each message and the
management of send and receive resources.

3.1 Sending and receiving messages

U-Net is composed of three main building blocks,
shown in Figure 1:endpoints serve as an application’s
handle into the network and contain abuffer areato hold
message data, andmessage queues to hold descriptors for
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messages that are to be sent or that have been received.
Each process that wishes to access the network first creates
one or more endpoints. Communication between end-
points occurs throughcommunication channels — a com-
munication channel is associated with a pair of endpoints
and a channel identifier (usually a small integer) that is
assigned to it at the time of creation.

Communication channel identifiers, in conjunction with
message tags, are used to uniquely identify the source and
destination of an individual message. The exact form of a
message tag depends on the network substrate — for
example, for ATM networks, virtual channel identifiers
(VCIs) may be used as message tags. An application regis-
ters these tags with U-Net when it creates a communica-
tion channel — an operating system service is needed to
assist the application in determining the correct tag to use
based on a specification of the destination process and the
route between the two nodes.1

To send a message, a user process composes the data in
the endpoint buffer area and pushes a descriptor for the
message onto the send queue. The network interface then
transmits the message after marking it with the appropriate
message tag.

Incoming messages are demultiplexed based on the
message tag. The data is then transferred into one or more
free buffers (in the buffer area of the recipient endpoint)
provided by the application and a message descriptor with

1. The operating system service will assist in route discovery,
switch-path setup and other (signalling) tasks that are specific
to the network technology used. The service will also perform
the necessary authentication and authorization checks to
ensure that the application is allowed access to the specific net-
work resources and that there are no conflicts with other appli-
cations. After the path to the peer has been determined and the
request has passed the security constraints the resulting tag
will be registered with U-Net such that the latter can perform
its message multiplexing/demultiplexing function. A channel
identifier is returned to the requesting application to identify
the communication channel to the destination.

pointers to the buffers is pushed onto the appropriate
receive queue. As an optimization for small mes-
sages—which are used heavily as control messages in pro-
tocol implementations—a receive queue descriptor may
hold an entire small message (instead of buffer pointers).
This avoids buffer management overheads and can
improve the round-trip latency substantially. The size of
these small messages is implementation-dependent and
typically reflects the properties of the underlying network.

The receive model supported by U-Net is either polling
or event-driven: the process can periodically check the sta-
tus of the receive queue, it can block waiting for the next
message to arrive (using a UNIXselect call), or it can reg-
ister a signal handler with U-Net which is invoked when
the receive queue becomes non-empty. In order to amor-
tize the cost of an upcall over the reception of several mes-
sages U-Net allows all messages pending in the receive
queue to be consumed in a single upcall.

The management of the transmit and receive buffers is
entirely up to the application: the U-Net architecture does
not place constraints on the size or number of buffers nor
on the allocation policy used. The application provides
receive buffers explicitly to the NI via the free queue but it
cannot control the order in which these buffers are filled
with incoming data.

4 Comparing the U-Net Implementations
The two U-Net implementations compared in this paper

differ substantially due to the significant architectural dif-
ferences between the two networking technologies. The
Fast Ethernet version is implemented entirely within the
kernel while the ATM version uses custom firmware in the
network interface co-processor. The main differences are
the following:
• The size and granularity of network data units: ATM

packets in the AAL5 format must be segmented into 48-
byte cells, and the maximum packet size is 65KBytes.
Ethernet frames, on the other hand, can hold between 46
to 1500 bytes of payload each; larger packets must be
fragmented.

• Multiplexing: ATM allows data to be multiplexed on a
link at the relatively fine granularity of cells, while in
Ethernet the transmission of a packet of up to 1500
bytes is indivisible.

• Connection-oriented versus connection-less: ATM is
fundamentally a connection-oriented network, where
the network assigns a VCI to each end-to-end (applica-
tion-to-application) connection. Ethernet, however, is
primarily packet-switched and no connection set-up is
necessary. Moreover, the Ethernet source and destina-
tion addresses identify only a particular network inter-
face, not an individual application endpoint.

• Shared versus switched medium: Ethernet has tradition-

Figure 1: U-Net building blocks. Endpoints serve as an
application’s handle into the network, buffer areas are
regions of memory that hold message data, and message
queues (send/recv/free queues) hold descriptors for mes-
sages that are to be sent or that have been received.

recv
queue

free
queue

send
queuebuffer area

U-Net endpoint
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ally been a shared-medium network where all stations
compete for use of the wire, using exponential backoff
algorithms for retransmission in case of collision. ATM
is switched in the sense that every station has a point-to-
point connection to a local router. Thus, the use of Fast
Ethernet for high-performance communication raises
the concern that contention for the shared medium
might degrade performance as more hosts are added to
the same network. However, Fast Ethernet switches are
available (typically at lower cost than comparable ATM
switches) and offer each station a “private” link to the
network. Such a “private” link can be a full-duplex link
which allows a host to simultaneously send and receive
messages (as opposed to a shared half-duplex link) and
thus doubles the aggregate network bandwidth.

4.1 Experimental Set-up

The experimental configuration consists of a cluster of
Pentium workstations, running the Linux operating sys-
tem, connected via Fast Ethernet and ATM. The network
interface for the ATM interconnect is the Fore Systems
PCA-200 that includes an on-board processor which per-
forms the segmentation and reassembly of packets as well
as transfers data to/from host memory using DMA. The
PCA-200 consists of a 25Mhz Intel i960 processor,
256Kbytes of memory, a DMA-capable PCI-bus interface,
a simple FIFO interface to the ATM fiber, and an AAL5
CRC generator/checker. The i960 processor is controlled
by firmware which is downloaded into the on-board RAM
by the host. The host processor can map the PCA-200
memory into its address space in order to communicate
with the i960 during operation. The U-Net implementation
on this interface uses custom firmware to implement the
U-Net architecture directly on the PCA-200. The ATM
switch used is a Fore Systems ASX-200 which forwards
cells in about 7µs.

The network interface for the Fast Ethernet interconnect
uses the DECchip 21140 Fast Ethernet controller. The
DC21140 is a PCI bus master capable of transferring com-
plete frames to and from host memory via DMA. It
includes a few on-chip control and status registers, a DMA
engine, and a 32-bit Ethernet CRC generator/checker. The
board maintains circular send and receive rings, containing
descriptors which point to buffers for data transmission
and reception in host memory. The design of the DC21140
assumes that a single operating system agent will multi-
plex access to the hardware. Therefore, coordination with
the host OS is necessary to allow protected access to mul-
tiple user applications.

Several Fast Ethernet hubs and switches were used to
benchmark the network interface. A Bay Networks
100BaseTX hub, a Bay Networks 28115 16-port switch

and a Cabletron FN100 8-port switch were individually
employed.

4.2 ATM Network Interface Operation

The U-Net implementation for the PCA-200 uses cus-
tom firmware to implement U-Net directly and is largely
identical to that of the Sbus-based SBA-200 described in
[16]. The firmware allows multiple user processes to con-
currently communicate with the on-board i960 which
maintains a data structure that contains protection infor-
mation for all open endpoints. Buffer areas are pinned to
physical memory and mapped into the i960’s DMA space
allowing direct transfers between user space and the phys-
ical network queues. Receive queues are allocated in main
memory so that the host can poll them without crossing
the I/O bus, while send and free queues are placed in PCA-
200 memory and mapped into user-space so that the i960
can poll these queues without DMA transfers.

4.2.1 Endpoint and Channel Creation

Creation of user endpoints and communication channels
is managed by the operating system. Applications use the
system call interface to the device driver to create end-
points and channels. The device driver validates these sys-
tem call requests and passes the appropriate commands to
the i960 using a special command queue. This is necessary
to enforce protection boundaries between processes and to
properly manage system resources. Communication chan-
nels are associated with a pair of endpoints identified by a
virtual channel identifier (VCI) pair. The VCIs are used as
message tags to route outgoing messages and demultiplex
incoming messages. The buffer areas and message queues
for distinct endpoints are disjoint and are only mapped to
the address space of the process that creates the endpoint.

4.2.2 Transmission

In order to send a message, the host stores the U-Net
send descriptor into the i960-resident transmit queue using
a double-word store. The i960 periodically polls each
transmit queue for new entries — endpoints with recent
activity are polled more frequently given that they are
most likely to correspond to a running process. Once the
i960 finds a new transmit descriptor, it initiates DMA
transfers from the user-space buffer(s) to the network out-
put FIFO on the SBA-200/PCA-200. For large messages,
the DMA occurs in 32-byte bursts on the Sbus and 96-byte
bursts on the PCI bus.

4.2.3 Reception

The i960 periodically polls the network input FIFO and
processes incoming cells one at a time. For each cell, it
uses the VCI to index into a table which indicates the
appropriate destination endpoint. When the first cell of a
message arrives, the i960 allocates a buffer from the end-
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point’s free queue and transfers the cell into the buffer.
Additional cells are appended one at a time to the buffer.
When the last cell of a message is received, the i960
checks the CRC (which is accumulated in hardware) and
places a descriptor into the endpoint’s receive queue.

Receiving single-cell messages is special-cased to
improve the round-trip latency for small messages — such
messages are directly transferred into the next empty
receive queue entry (which is large enough to hold the
entire message) and thus avoids the overheads of buffer
allocation and extra DMA for the buffer pointers.

4.3 Fast Ethernet Network Interface Operation

The DC21140 PCI Fast Ethernet controller used in the
U-Net implementation provides a straightforward inter-
face based on transmit and receive buffer descriptor rings.
This interface was designed for traditional in-kernel net-
working layers in which the network interface is con-
trolled by a single agent on the host. In order to multiplex
the network interface among user processes, the U-Net
implementation must be placed in the kernel which differs
significantly from U-Net/ATM.

The in-kernel implementation of U-Net is best described
as a protected co-routine available to user processes. User
processes can issue a fast trap into kernel space which ser-
vices the U-Net transmit queue in a manner similar to the
i960 in the ATM implementation. When network packets
arrive, an interrupt is generated by the DC21140 which
transfers control to the in-kernel U-Net routines for mes-
sage reception. In this sense a portion of main processor
time is allocated to servicing U-Net requests by user pro-
cesses, while in U-Net/ATM a dedicated co-processor is
employed for this task.

The DC21140’s transmit and receive descriptor rings are
stored in host memory: each descriptor contains pointers
to up to two buffers (also in host memory), a length field,
and flags. Multiple descriptors can be chained to form a
PDU out of an arbitrary number of buffers. These descrip-
tor rings must be shared among all U-Net/FE endpoints
and are therefore distinct from the U-Net transmit and
receive queues stored in the communication segment.
Figure 2 shows the various rings, queues and buffer areas
used in the U-Net/FE design.

4.3.1 Endpoint and Channel Creation

A communication channel in the U-Net/FE architecture
is associated with a pair of endpoints, each of which is
identified by a combination of a 48-bit Ethernet MAC
address and a one-byte U-Net port ID. The MAC address
and port ID combinations are used as message tags in the
U-Net/FE architecture. A communication channel is cre-
ated by issuing a system call to the U-Net device driver
and specifying the two sets of Ethernet MAC addresses
and port IDs. The Ethernet MAC address is used to route
outgoing messages to the correct interface on the network
while the port ID is used to demultiplex incoming mes-
sages to a particular endpoint. The operating system regis-
ters the requested addresses and returns a channel
identifier to the application. The channel identifier is sub-
sequently used by the application to specify a particular
end-to-end connection when pushing entries onto the U-
Net send queue. Similarly, the operating system uses the
incoming channel identifier when placing new entries on
the receive queue for the application.

re
cv

 q
ue

ue

fr
ee

 q
ue

ue

se
nd

 q
ue

ue

buffer area

U-Net endpoint

re
cv

 q
ue

ue

fr
ee

 q
ue

ue

se
nd

 q
ue

ue

buffer area

U-Net endpoint

send ringrecv ring

recv buffers xmit headers

DC21140 device structures

copy

Figure 2: U-Net/FE endpoint and device data structures.
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4.3.2 Packet Transmission

To send a message, an application constructs the mes-
sage in the endpoint buffer area and pushes an entry onto
the U-Net send queue. The application issues a fast trap to
the kernel where the U-Net driver services the user’s send
queue. This is implemented as an x86 trap gate into kernel
space, requiring under 1µs for a null trap on a 120 Mhz
Pentium system. This form of trap does not incur the over-
head of a complete system call, and the operating system
scheduler is not invoked upon return.

The kernel service routine traverses the U-Net send
queue and, for each entry, pushes corresponding descrip-
tors onto the DC21140 send ring. Each ring descriptor
contains pointers to two buffers: the first is an in-kernel
buffer with the Ethernet header and packet length field,
and the second is the user buffer containing the data (for
multi-buffer user messages additional descriptors are
used). By pointing directly to the U-Net buffer area, a
copy is avoided and the DC21140 can transmit data
directly from user-space. After all descriptors have been
pushed onto the device transmit ring, the in-kernel service
routine issues a transmit poll demand to the DC21140
which initiates the actual transmission.

4.3.3 Packet Reception

Upon packet reception the DC21140 transfers the data
into buffers in host memory pointed to by a device receive
ring analogous to the transmit ring. These are fixed buffers
allocated by the device driver and are used in FIFO order
by the DC21140. The DC21140 generates an interrupt, the
kernel interrupt routine determines the destination end-
point and channel identifier from the U-Net port number
contained in the Ethernet header, copies the data into the
appropriate U-Net buffer area and enqueues an entry in the
user receive queue. As an optimization, small messages
(under 64 bytes) are copied directly into the U-Net receive
descriptor itself.

4.4 Performance and Discussion

Although U-Net cannot be implemented directly on the
Fast Ethernet interface itself due to the lack of a program-
mable co-processor, the kernel trap and interrupt handler
timings demonstrate that the U-Net model is well-suited to
a low-overhead in-kernel implementation. The processor
overhead for sending a message, independent of size, is
approximately 4.2µs. While a co-processor could off-load
the Pentium, few (if any) could perform the necessary
queue management functions in less time. In addition,
allowing the U-Net queue management to take place on
the host processor is beneficial as host memory access
from the Pentium does not incur overheads for bus trans-
fers. In contrast, network interface co-processors must
cross the system bus to manage queues in host memory.

4.4.1 Transmission and reception timings

The timeline for transmission of a 40-byte message on
U-Net/FE is shown in Figure 3. The timings were obtained
using the Pentium cycle counters and using repeated exe-
cutions of parts of the trap code. The timeline corresponds
to the transmission of a 60-byte Ethernet frame including
the U-Net and Ethernet headers. A timing analysis of the
U-Net trap code shows that the processor overhead
required to push a message into the network is approxi-
mately 4.2µs of which about 20% are consumed by the
trap overhead. In contrast, the processor overhead for
sending a 40-byte message on U-Net/ATM is about
1.5µsec while the i960 overhead is about 10µsec.

Figure 4 shows the timeline for reception of 40- and
100-byte messages by U-Net/FE. The short message opti-
mization is effective as 15% overhead is saved by not allo-
cating a separate receive buffer. For messages of more than
64 bytes the copy time increases by 1.42µs for every addi-
tional 100 bytes. The latency between frame data arriving
in memory and the invocation of the interrupt handler is
roughly 2µs and the major cost of the receive interrupt
handler is the memory copy required to place incoming
data into the appropriate user buffer area. The Pentium
memory-copy speed is about 70Mbytes/sec and the DMA

Figure 3: Fast Ethernet transmission timeline for a 40 byte message (60 bytes with the Ethernet and U-Net headers)

0.5µs 0.74µs 0.37µs 0.56µs 0.92µs 0.42µs 0.24 0.4µs

5. issue poll demand to DC21140 to start TX process
6. free send ring descriptor of previous message
7. free U-Net send queue entry of previous message
8. return from trap

1. trap entry overhead
2. check U-Net send parameters
3. Ethernet header set-up
4. device send ring descriptor set-up

time

0µs 4.2µs

1 2 3 4 5 6 7 8

1µs 2µs 3µs
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of incoming frames from the DC21140 is pipelined with
the copy within the interrupt handler. The primary disad-
vantage of the additional copy is processor utilization dur-
ing message receive. In comparison, the receive overhead
for the i960 for a 40-byte message (which does not require
the allocation of a receive buffer) is approximately 13µs.

4.4.2 Bandwidth and Round-trip Latency

Figure 5 depicts the application-to-application message
round-trip time as a function of message size for U-Net/FE
on the DC21140 and U-Net/ATM on the FORE PCA-200.
Message sizes range from 0 to 1498 bytes, the maximum
PDU supported by U-Net/FE; although the PDU limit on
ATM is 64Kbytes, corresponding to the MTU of AAL5.
Three Fast Ethernet round-trip times are shown: with a
broadcast hub, with a Bay Networks 28115 16-port switch,
and with a Cabletron FastNet100 8-port switch. The
round-trip time for a 40-byte message over Fast Ethernet
ranges from 57µsec (hub) to 91µsec (FN100), while over
ATM it is 89µsec2. This corresponds to a single-cell send
and receive which is optimized for ATM. The inset depicts
round-trip times for small messages (between 0 and 128
bytes).

The increase in latency over Fast Ethernet is linear with
a cost of about 25µsec per 100 bytes; over ATM, the
increase is about 17µsec per 100 bytes. This can be attrib-
uted in part to the higher serialization delay over 100Mbps
Fast Ethernet as opposed to 155Mbps ATM. Longer mes-
sages (i.e. those that are larger than a single cell) on ATM
start at 130µsec for 44 bytes and increase to 351µsec for
1500 bytes. This sharp rise can be attributed to the fact that
both transmit and receive on U-Net/ATM are optimized

2. U-Net over ATM on 140Mbps TAXI achieves 65µs round-trip
latency [16]; the additional overhead here is incurred due to
OC-3c SONET framing.

for single cell sends and receives, in particular, a single
cell receive does not involve the additional cost of receive
buffer allocation. Similar behavior (although not as pro-
nounced) is shown by the U-Net/FE graphs in the neigh-
borhood of 64 bytes, which is the threshold for the small-
message optimization.

Figure 6 depicts bandwidth in Mbits/sec over U-Net for
Fast Ethernet and ATM with message sizes ranging from 0
to 1498 bytes. For messages as small as 1Kbyte the band-
width approaches the peak of about 97Mbps (taking into

0.4µs0.52µs 0.1 0.64µs 0.6µs 1.32µs

0.71µs 1.42µs 1.32µs

0.5µs

0.4µs0.52µs 0.1 0.64µs0.5µs

Figure 4: Fast Ethernet reception timeline for a 40-byte and a 100-byte message. With the Ethernet and U-
Net headers these correspond to 60 and 116 byte frames.
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2. poll device recv ring
3. demux to correct endpoint
4. alloc+init U-Net recv descr
5a. copy 40 byte message

5b1. allocate U-Net recv buffer
5b2. copy 100 byte message
6. bump device recv ring
7. return from interrupt
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tim
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Figure 5: Round-trip mes-
sage latency vs. message
size for Fast Ethernet and
ATM. The graph on the
right magnifies the small-
message latency mea-
surements. Fast Ethernet
measurements were taken
using a broadcast hub, a
Bay Networks 28115 16-
port switch, and a
Cabletron FastNet100 8-
port switch The ATM
measurements us a Fore
ASX-200 switch.
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account Ethernet frame overhead) for Fast Ethernet. Due
to SONET framing and cell-header overhead the maxi-
mum bandwidth of the ATM link is not 155Mbps, but
rather 138Mbps. The maximum bandwidth here is 120
Mbps, which represents the maximum achievable band-
width for the 140Mbps TAXI link used as the receiving
end for this benchmark.

4.4.3 Discussion

It is evident from the above performance figures that the
nature of the network interface has significant effect on the
performance. The U-Net/FE architecture, while simple,
sacrifices overlap of communication and computation for
lower message latencies. This is clear from the send over-
heads for a 40-byte message: while the total send overhead
for U-Net/FE is 5.4µs, the total send overhead for U-
Net/ATM is approximately 11.5µs, almost double. How-
ever, the processor overheads are dramatically different in
the two cases: the U-Net/FE architecture shows an over-
head of 4.2µs while that for U-Net/ATM is 1.5µs.

Communication patterns involving a great deal of syn-
chronization are suited to U-Net/FE as latency is lower,
although this comes at the cost of trapping to the kernel for
send and receive. In contrast, communication over U-
Net/ATM incurs a very low processor overhead at the cost
of off-loading to a slow network interface co-processor.
The U-Net/ATM architecture is suitable for applications

which pipeline many message transmissions and synchro-
nize rarely, in particular applications requiring high band-
width. These observations are further supported by
application benchmark results in the next section.

Another issue to be addressed is scalability. The use of
Ethernet MAC addresses and port IDs to address end-
points does not allow messages to traverse multiple
switches or IP routers. One solution would be to use a sim-
ple IPv4 encapsulation for U-Net messages; however, this
would add considerable communication overhead. U-
Net/ATM does not suffer this problem as ATM virtual cir-
cuits are established network-wide.

5 Parallel Algorithm Benchmarks
A set of parallel algorithm benchmarks written in the

Split-C [5] language have been employed to compare
high-level application performance of the two U-Net
implementations. The Split-C language allows processes
to transfer data through the use ofglobal pointers — a vir-
tual address coupled with a process identifier. Dereferenc-
ing a global pointer allows a process to read or write data
in the address space of other nodes cooperating in the par-
allel application. Split-C is implemented over Active Mes-
sages [17], a low-cost RPC mechanism, providing flow
control and reliable transfer, which has been implemented
over U-Net [16].

The Fast Ethernet experimental platform consists of a
cluster of one 90 MHz and seven 120-MHz Pentium work-
stations running Linux 1.3.71 and connected by a Bay
Networks 28115 16-port switch to a 100Mbps Fast Ether-
net network, while the ATM experimental platform con-
sists of a cluster of 4 SPARCStation 20s and 4
SPARCStation 10s running SunOS 4.1.3 and connected by
a Fore ASX-200 switch to a 140 Mbps ATM network3,
using the FORE Systems SBA-200 SBus ATM adaptor.
The SBA-200 implementation of U-Net is largely identical
to that for the PCA-200 described here.

5.1 Benchmark Description

The Split-C benchmark suite consists of five programs:
a blocked matrix multiply, a sample sort optimized for
small and large message transfers, and a radix sort opti-
mized for small and large message transfers. The perfor-
mance of this benchmark suite on a variety of
multiprocessors is presented in [5].

The matrix multiply application was run twice, once
using matrices of 8 by 8 blocks with 128 by 128 double
floats in each block, and once using 16 by 16 blocks with
16 by 16 double floats in each block. The main loop in the

3. The use of SPARCstations rather than Pentiums connected via
ATM was necessitated by lack of available PCA-200 inter-
faces. As demonstrated by the benchmarks the computational
capabilities of these machines are very comparable.

Figure 6: Bandwidth vs.
message size for Fast
Ethernet and ATM. Fast
Ethernet saturates at
around 96Mbps while
ATM reaches 118Mbps
(this measurement uses
a 120Mbps link in the
network). The jagged
ATM measurement is
due to the segmentation
into fixed-size cells.
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matrix multiply algorithm repeatedly fetches a block from
each of the two matrices to be multiplied, performs the
multiplication, and stores the result locally.

Both the radix and sample sort benchmarks sort an array
of 32-bit integers over all nodes. Each node has 512K keys
with an arbitrary distribution. The radix sort uses alternat-
ing phases of local sort and key distribution involving
irregular all-to-all communication. The algorithm per-
forms a fixed number of passes over the keys, one for
every digit in the radix. Each pass consists of three steps:
first, every processor computes a local histogram based on
its set of local keys; second, a global histogram is com-
puted from the local histograms to determine the rank of
each key in the sorted array; and finally, every processor
sends each of its local keys to the appropriate processor
based on the key’s rank in the sorted array. In the version
optimized for small messages, each processor transfers
two keys at a time in the last step of each pass. In the ver-
sion optimized for large messages, each processor sends
one message containing all relevant keys to every other
processor during the last step of each pass.

Instead of alternating computation and communication
phases, the sample sort algorithm uses a single key distri-
bution phase. The algorithm selects a fixed number of
samples from keys on each node, sorts all samples from all
nodes on a single processor, and selects splitters to deter-
mine which range of key values should be used on each
node. The splitters are broadcast to all nodes. The main
communication phase consists of sending each key to the
appropriate node based on splitter values. Finally, each
node sorts its values locally. The small-message version of
the algorithm sends two values per message while the
large-message version transmits a single bulk message.

5.2 Performance

The absolute execution times for benchmark runs on
two, four and eight nodes of both the Pentium Fast Ether-
net cluster and the SparcStation ATM cluster are shown in
Table 1. Execution times normalized to the 2-node Sparc-
Station ATM cluster are shown in Figure 7.. All bench-

marks have been instrumented to measure communication
and computation time separately

The overall results demonstrate that performance on
both U-Net implementations scales well when the number
of processors is increased. Table 2 shows the speedup from
2 to 8 nodes for both U-Net/FE and U-Net/ATM. In the
case of matrix multiplication, the matrix size is kept con-
stant for all clusters as demonstrated by the corresponding
reduction in execution time. In the case of the radix and
sample sorts, the number of keys per processor is kept
constant, explaining the increased total execution time
from 2 to 8 nodes.

Two factors explain the matrix multiply performance
advantage over ATM. First, large messages are used which
benefit from higher bandwidth. Second, SPARC floating-
point operations outperform those of the Pentium. The
small-message versions of the sample and radix sort
benchmarks are dominated by network time, and Fast
Ethernet outperforms ATM due to lower overhead. In
addition, Pentium integer operations outperform those of
the SPARC. Increased synchronization overheads as the
number of processors is increased accounts for the addi-
tional communication time on 4 and 8 nodes. ATM outper-
forms Fast Ethernet for the large-message versions of the
sample and radix sort benchmarks, primarily due to
increased network bandwidth. We cannot account for the
anomalous increase in computation time as the number of
processors increase for sample sort.

In summary, the Fast Ethernet cluster demonstrates
higher performance when low message latencies and inte-
ger operations dominate; the ATM cluster demonstrates
higher performance when higher bandwidth and floating-
point performance are required.

6 Summary and Conclusions
U-Net has been presented as an efficient user-level com-

munication architecture over Fast Ethernet, with perfor-
mance rivaling that of 155 Mbps ATM. We have shown
that U-Net can be extended to networks other than ATM,
as well as to network interfaces without a programmable
co-processor, where the OS kernel is required to intervene
in the critical path.

A detailed timing analysis of the U-Net/FE trap code
shows that processor overhead for transmit is small, while

Benchmark ATM
2 nodes

FE
2 nodes

ATM
4 nodes

FE
4 nodes

ATM
8 nodes

FE
8 nodes

mm 128x128 56.59 117.00 33.31 54.68 29.04 48.52

mm 16x16 1.26 1.67 0.90 1.04 0.56 0.67

ssortsm512K 1.08 0.63 1.26 0.78 1.69 1.08

ssortlg512K 2.03 2.06 2.11 2.55 2.93 3.22

rsortsm512K 48.13 44.61 76.64 63.79 88.23 90.50

rsortlg512K 4.73 5.35 5.01 6.30 7.15 7.54

Table 1: Execution Times for Split-C Benchmarks (in seconds)

Benchmark ATM FE

mm 128x128 1.9 2.4

mm 16x16 2.2 2.5

ssortsm512K 2.5 2.4

ssortlg512K 2.9 2.5

rsortsm512K 2.2 2.0

rsortlg512K 2.7 2.9

Table 2: Speedup for ATM and FE clusters (from 2 to 8 nodes)
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receive overhead is dominated by the message copy into
the appropriate user buffer. The i960 co-processor on the
ATM interface is significantly slower than the Pentium
host and its use slows down the latency times. The main
benefit of the co-processor is to allow the network inter-
face to examine the packet header and DMA the data
directly into the correct user-space buffer, thereby elimi-
nating a costly copy.

Split-C application benchmarks have been used to dem-
onstrate that inexpensive Pentium workstation clusters can
be employed for parallel computing with U-Net/FE as the
basic interconnect. While applications requiring higher
bandwidth may fare better with an ATM interconnect, Fast
Ethernet provides an important price/performance point
for workstation clusters.
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