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ABSTRACT

Energy in sensor networks is a distributed, non-transferable
resource. Over time, differences in energy availability are
likely to arise. Protocols like routing trees may concentrate
energy usage at certain nodes. Differences in energy har-
vesting arising from environmental variations, such as if one
node is in the sun and another is in the shade, can pro-
duce variations in charging rates and battery levels. Because
many sensor network applications require nodes to collabo-
rate — to ensure complete sensor coverage or route data to
the network’s edge — a small set of nodes whose continued
operation is threatened by low batteries can have a dispro-
portionate impact on the fidelity provided by the network as
a whole. In the most extreme case, the loss of a single sink
node may render the remainder of the network unreachable.

While previous research has addressed reducing the en-
ergy usage of individual nodes, the challenge of collaborative
energy management has been largely ignored. We present
Integrated Distributed Energy Awareness (IDEA), a sensor
network service enabling effective network-wide energy deci-
sion making. IDEA integrates into the sensor network appli-
cation by providing an API allowing components to evaluate
their impact on other nodes. IDEA distributes information
about each node’s load rate, charging rate, and battery level
to other nodes whose decisions affect it. Finally, IDEA en-
ables awareness of the connection between the behavior of
each node and the application’s energy goals, guiding the
network toward states that improve performance.

This paper describes the IDEA architecture and demon-
strates its use through three case studies. Using both simu-
lation and testbed experiments, we evaluate each IDEA ap-
plication by comparing it to simpler approaches that do not
integrate distributed energy awareness. We show that using
IDEA can significantly improve performance compared with
solutions operating with purely local information.
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1. INTRODUCTION

Energy-harvesting sensor networks experience variations
in load and charging rates that threaten high-fidelity oper-
ation. Changing application demands produce variations in
load rates, while energy-harvesting properties produce vari-
ations in charging rates. Energy mismanagement can lead
to reduced fidelity, when nodes’ batteries empty, or wasted
energy, when nodes harvest energy they cannot store.

Energy harvesting capabilities — such as solar charging —
further complicate the distributed energy management task.
The energy collected at each node may vary significantly
based on node placement, and the energy collected daily
may vary significantly based on weather patterns. Prepar-
ing the network for overnight operation requires capturing
as much energy as possible during the day and minimizing
energy wasted charging full batteries, while overnight oper-
ation requires adjusting the network’s load profile to match
the distribution of energy stored during daytime.

Fortunately, dense networks provide redundancy that can
be used to control the distribution of energy usage. Multi-
ple possible routing paths may connect a node to the sink.
Tuning MAC parameters allows nodes to shift communica-
tion load to their neighbors. Sensor inputs from multiple
nodes may be redundant, allowing some to be disabled or
operated at reduced fidelity. The existence of these choices
implies that it is possible to tune the energy load of the
network to better match energy availability. Effective load
tuning can increase the fidelity provided to the application
at a fixed battery size, or allow battery sizes to be reduced
while maintaining the required fidelity level.



Existing sensor network platforms provide little support
for collaborative energy management. Approaches such
TinyOS [13], Pixie [20], Eon [30], and Levels [15] facilitate lo-
cal control only, failing when greedy node energy minimiza-
tion fails to produce the best outcome. Network-wide solu-
tions such as Lance [33], Mercury [24], and EnviroMic [21]
either require centralized control or are tailored to the needs
of a specific application domain. In sensor networks the
majority of energy consumption is consumed by multi-node
collaboration. We argue that due to the distributed nature
of energy consumption and availability, improving perfor-
mance requires consideration of both where energy is and
how much is being used.

Matching load to availability across the network requires
integrating with application components producing energy
load, distributing load and availability information to fa-
cilitate node decision making, and awareness of the con-
nection between load, availability, and application-level fi-
delity. In this paper, we propose Integrated Distributed En-
ergy Awareness (IDEA), a sensor network service address-
ing these goals. IDEA monitors and models the load and
charge rates on each node. To allow nodes to reason about
their impact on others, each node distributes its model pa-
rameters, updating them as necessary to ensure continued
accuracy. IDEA clients are responsible for estimating their
own distributed energy impact. When changing state, IDEA
helps them evaluate each proposed option using an energy
objective function tailored to meet specific application goals.
By tracking availability and informing the energy decision-
making process, IDEA simplifies the construction of energy-
aware components.

Our paper makes the following contributions. First, we
describe IDEA, a new service uniting energy monitoring,
load modeling, and distributed data sharing into a single
service facilitating distributed decision making. Second, we
present three case studies illustrating how to use IDEA, in-
cluding a component that tunes MAC parameters, an exist-
ing routing protocol modified to choose energy-aware routes,
and an application using IDEA to determine how to localize
acoustic events. Third, using simulation and testbed results
we compare the performance of IDEA with approaches that
do not consider energy distribution, showing that IDEA en-
ables improvements in lifetime of up to 35%.

The rest of this paper is organized as follows. Section 2
motivates the need for IDEA using a simple example. In
Section 3 we present the IDEA architecture in detail and
describe our current implementation. We describe our three
case studies in detail in Section 4. Section 5 presents simu-
lation and testbed results. We review related work in Sec-
tion 6, and Section 7 outlines future work and concludes.

2. MOTIVATION

IDEA’s architecture is motivated by two observations.
First, many sensor network applications require a large por-
tion of the network to meet their fidelity requirements. As a
result, failures of sensor nodes can deeply impact delivered
data quality. Indeed, the most heavily-loaded nodes are of-
ten those that are most critical to the application. Consider
a node near the root of a spanning tree, which is responsible
for forwarding traffic for a substantial portion of the net-
work. Loss of this single node can have a disproportionate
effect on the whole network’s operation.

Figure 1: Exzample routing problem. The edges are
the energy in mJ to send a packet.

Second, in most applications, some portion of the load at
each node is due to interaction with other nodes and cannot
be reduced unilaterally. In the case of routing, nodes spend
their own energy to listen to and forward packets for other
nodes. In such cases, load mitigation must be negotiated
with the peer nodes producing the load. For example, a node
with a valuable sensor input might do everything possible to
reduce its own power consumption, but unless it can move
itself off of a high-traffic routing path, it will be unable to
reduce energy expenditure beyond a certain point.

Existing approaches to sensor network energy manage-
ment suffer from several weaknesses. Greedy approaches
to local energy minimization assume that each node mini-
mizing its own power consumption is best for the network
as a whole. However, this is not always the case. Such ap-
proaches also cannot address the external load problem de-
scribed above. Some sensor network protocols embed forms
of distributed energy management into their operation, but
by doing so they encode policies unsuitable for certain ap-
plications. IDEA addresses these deficiencies by providing a
distributed service allowing any component controlling dis-
tributed load to perform collaborative energy management.

2.1 Example: Energy-Aware Routing

As a simple example demonstrating the need for IDEA,
consider a four-node routing problem. Figure 1 shows the
network topology, with the energy required to reliably trans-
fer a packet over each link shown. (To simplify the exam-
ple we ignore receive costs, assume all nodes have the same
data rate of one packet per second, and assume a powered
sink.) The application attempts to localize events by col-
lecting data from the network, and must use all four nodes,
meaning that the loss of a single node will render the net-
work useless.

Node 3 has two routes to the sink Node 0: 3,1,0 and
3,2,0. If Node 3 conserves power by making a local greedy
decision, it will route through Node 1, since sending a packet
to Node 1 consumes 0.5 mJ of energy as opposed to 1.0 mJ
for sending to Node 2. Even assuming Node 3 knows the
power consumption of the links 1,0 and 2,0, with no other
information it still chooses the route though Node 1, which
consumes less total energy per packet than the route through
Node 2, 1.0 mJ per packet versus 2.0 mJ.



The question we ask is, under what conditions will us-
ing route 3,1,0 — which consumes the least energy locally
and globally — actually harm application performance? We
identify four situations where using the alternative route
3,2,0 is the correct choice, each described below. To fa-
cilitate our discussion we define B,,, C,, and L,, as the bat-
tery in joules, charging rate in mJ per second, and non-
routing load in mJ per second at Node n respectively. The
choice we are considering is between two possible load dis-
tributions, R € R, where R*"° = (0.0,1.0,1.0,0.5) and
R**% = (0.0,0.5,2.0,1.0). RZ°“*® represents the cost to
Node n assuming Node 3 uses the route indicated. (Node 1
and Node 2 route directly to the sink.) For example, Rg’Q’O
is 2.0 mJ because the cost to send a packet from Node 2 to
Node 0 is 1.0 mJ and Node 2 must send two packets, one
from Node 3 as well as a packet from the data generated
locally at Node 2.

e Differences in initial battery levels: If the nodes
are not harvesting energy (C, = 0¥n), no non-routing
load exist (L, = 0¥n), and Nodes 2 and 3 have signifi-
cantly more energy than Node 1, then routing through
Node 2 will increase the lifetime of Node 1, which due
to its low battery level defines the lifetime of the entire
network. Specifically, if By > B; *2 and Bs > By %2
then using R**° will increase the lifetime of the net-
work.

e Differences in non-routing load rates: Assum-
ing equal initial energy availability and no harvesting,
consideration of non-routing load L, is similar to dif-
ferences in battery sizes. Differences in non-routing
load rates between the nodes could be due to higher
sampling rates or sensor energy costs on various nodes.
Assuming B,, = #Vn and C,, = 0 Vn, the result is sim-
ilar: if Lo +1.0 < Ly — 0.5 and L3 + 0.5 < L; — 0.5
then using R*>%° will increase the network’s lifetime.

e Differences in charging rates: It ¢ =
[0.0,2.0,2.0,2.0], then both routes allow all nodes to
continue to charge, but R>"° leads to an aggregate
charging rate of 4.0 mJ/s whereas R>%° produces an
aggregate charging rate of only 2.5 mJ/s, leaving R0
the better option. However, if C' = [0.0,0.5,2.0,2.0],
then the application must choose between the lower
aggregate charging rate of 1.5 mJ/s but better sur-
vivability of R**° and the higher aggregate charging
rate of 2.5 mJ/s but unsustainability of R**°. Since
our application cannot tolerate the loss of a single
node, it chooses the lifetime of Node 1 over charging
at Nodes 2 and 3, and thus R>*°. Note that if
C = [0,0.5,1.0,1.0], then no R € R leads to a
non-zero charging rate and the best route is R0,

e Overcharging: Assuming that the batteries at
Nodes 2 and 3 have reached capacity, but Node 1 has
not, if Ry*° > C» and Ry*° > Cj then using R**°
will either increase the charging rate at Node 1, if it is
charging, or increase its lifetime by reducing its load
if it is not. Either outcome is beneficial.

Data

: IDEA Optimizer
Sharing

O(L(S), B, C)a + u(S)(1 - a)

Shared Data Application

Client

(Co, Bo' |_0) Utility Stat
n n n L] a es
Energy
(c,B, Ln)\ Objective (s ,S,,S,...)

L T f Function |

Charge Battery Load
Model Monitor Model

A T 4

Charge Load

Monitor o .
o™ Monitor
)

Figure 2: Overview of IDEA architecture. IDEA
combines load and charge monitoring and model-
ing, energy data distribution, and an application-
provided energy objective function into a single ser-
vice which can easily be integrated into application
components. Client states are evaluated by the en-
ergy objective function and also assigned an appli-
cation utility. These scores are combined by the op-
timizer to select the state best balancing the appli-
cation’s distributed energy goals against the state’s
intrinsic desirability.

Making the correct decision at Node 3 in all four cases
requires that it know the load rates, charging rates, and
battery levels at Nodes 1 and 2. IDEA addresses this prob-
lem by distributing this information across the set of affected
nodes. The four cases above motivate several features in the
IDEA design. In general, the network may want to shift load
towards nodes that have a great deal of stored energy, low
load rates, high charging rates, or charging energy currently
going to waste, and away from nodes with low batteries, low
charging rates, or that are already highly-loaded. In cases
where shifting load produces extra overall load for the net-
work, as it does above, changes in load distribution must be
managed by the application based on its own goals and re-
quirements. Had our application above been able to tolerate
the loss of Node 1, it might have chosen to optimize charg-
ing at Nodes 2 and 3 in the third example. Respecting these
differences, IDEA is designed to facilitate application-level
input into its decision-making process.



3. ARCHITECTURE

In this section, we present the IDEA architecture. Begin-
ning with a formal problem definition and brief overview, we
then describe each major system component in detail.

3.1 Problem Definition

IDEA is intended to address the problem of energy-aware
tuning in sensor network applications. In IDEA, we use the
term client to refer to either an application (such as a track-
ing system) or an individual software component (such as a
MAC, routing, or time synchronization protocol) that wishes
to perform energy tuning. Clients interact with the IDEA
runtime residing on each sensor node to make decisions that
impact energy consumption and data fidelity.

Sensor network software components commonly operate
by making local decisions. For example, routing protocols [9,
37] typically form a spanning tree by each node picking a
parent based on local information, such as the radio link
quality or number of hops to the sink. Likewise, duty-cycling
MAC protocols [25] decide locally how often to poll the chan-
nel and check for traffic. In IDEA, these choices are repre-
sented as a universe of possible states S that the client can
be in at any given time. As an example, a routing protocol’s
states represent the set of possible parent nodes.

IDEA guides the selection of the optimal state for each
client component based on both the inherent value of that
state (such as the path quality to the sink in a routing pro-
tocol) as well as the distributed energy impact of choosing
that state. In the case of routing, selecting a given parent
impacts the energy of the parent as well as each node along
the routing path to the sink. The ideal choice of a parent
may change over time, for example, based on network load
or energy availability. IDEA clients periodically reevaluate
their current state and may switch to a new state if it is
deemed more desirable.

IDEA quantifies the distributed energy impact of each
state using an application-defined energy objective function.
Each state s € S has a corresponding a energy load vector,
E, where each component Lj (sy,) represents the estimated
energy load on node ¢ that will result from node n setting
its local state to s,. We represent the current battery level
(in joules) at node 7 by B; and the current charging rate
(in joules per second) at node @ by C;. In networks without
charging capability, C; = 0.

Formally, we can define the problem as follows. At a given
time, let us denote the global state of all nodes in the net-
work as S = {s1,82,...,8k}. The combined energy load at
node i induced by this selection of states is

k
Li(S) = ZLf(Sj)

Based on the current battery levels B; and charging rates
C;, we can define an energy objective function O(L(S), B, C)
that represents the global energy impact of the global state
assignment S. Likewise, this state assignment has an as-
sociated application-defined wtility u(S) that represents the
intrinsic desirability of the state — for example, minimizing
path length in a routing protocol. The choice of u(.S) can be
provided by the application as a static function, or learned
over time by measuring application quality as it runs. IDEA
is agnostic as to its form as it is evaluated online.

The system’s goal is to determine the optimal state
S* = argmng(E(S),B,C’) ca+u(S)-(1—a)

where a represents the tradeoff factor between energy im-
pact and intrinsic utility. Setting o = 1 optimizes only for
energy; a = 0 only for application-defined utility.

3.2 Energy Objective Functions

Before describing the IDEA system itself, we first consider
the space of energy optimization goals that the system can
target. We expect that different applications will allocate
energy differently, and the objective function allows the be-
havior of IDEA to be tuned to meet a variety of needs.

Examples of possible objective functions include:

e Maximize first-node lifetime. Depending on en-
ergy load and availability, different nodes may run out
of energy at different times. Given the current load and
charging rates, one can estimate the projected lifetime
of each node 7 given global state S as

i Ci < Li(S)
i = Ci—L;(S) v v
TG, 9) {w Ci > Li(S)

To maximize the first-node lifetime, we find the state
S* maximizing O = min; 7'(¢, S). This objective func-
tion will always choose states that shift load away from
the node projected to die first, irrespective of the load
that is produced on other nodes, and may be suitable
for applications whose fidelity requirements are sensi-
tive to the loss of single nodes.

e Maximize aggregate charging rate. Given the
charging rate C;, battery level B;, and battery capac-
ity P; on node i, the effective charging rate given global
state S is

k3

A@w:{?—h@)g

This reflects that when the node’s battery fills it is
no longer able to collect charge. By maximizing O =
>, A(7,S), we choose the state that leads to the net-
work collecting charge as quickly as possible. When
node batteries are all still charging this objective func-
tion will try to find the state minimizing the total sys-
tem load. However, once batteries begin to fill, it will
choose states that shift load towards nodes charging
full batteries, since any additional charge these nodes
capture cannot be stored. Shifting load towards over-
charging nodes allows nodes without full batteries to
charge more rapidly. This objective function prior-
itizes collecting charge over preserving node uptime,
and may be well-suited to applications that expect to
experience periodic charging cycles and can tolerate
some nodes running out of energy.

1A
e lae)

K3

One of the tradeoffs IDEA objective functions may per-
form is between increasing the amount of charge collected —
which leads to reducing the cumulative network-wide impact
of each IDEA component — and periods of node downtime
resulting from poor energy distribution. Some applications
may weight node downtime differently for each node, de-
pending on the quality of the sensor data it is providing,
its location, or other factors. Application goals will differ,
but the flexibility provided by the objective function allows
IDEA to support a variety of different requirements.



3.3 IDEA Overview

Thus far, we have defined the goal of the system as achiev-
ing a globally optimal assignment of states to each sensor
node. Performing such a global optimization would be pos-
sible through a central node (such as the base station) col-
lecting load and charge rates from every node and computing
the optimal assignment centrally, then informing all nodes
of their states. However, in large networks, this approach
would induce large communication overheads, reducing en-
ergy efficiency. Central control also precludes nodes from
making rapid local changes to states, for example, to select
a new parent in a routing tree if the current parent dies.

IDEA seeks to perform optimization in a decentralized
fashion, with the goal of closely approximating the glob-
ally optimal solution. An important observation is that
most state changes only the impact energy consumption of
a node’s immediate neighbors." Hence, nodes can perform
a local optimization using information gathered from their
neighbors. Although this approach does not ensure that the
state assignment will be globally optimal, we show in Sec-
tion 5 that it efficiently approximates the optimal solution.

Figure 2 provides an overview of the IDEA architecture.
Each node monitors its own load rate, charging rate, and
battery level. Monitoring output is passed to a modeling
component that produces models of load and charging be-
havior. Model parameters are distributed to other nodes via
a data sharing component, which maintains a distributed
table allowing energy information to be queried by energy
objective functions. IDEA monitors the accuracy of each
node’s local model parameters, re-propagating them as nec-
essary to maintain the distributed energy information.

Clients periodically evaluate their current state, which
can be driven either by application-specific behaviors (e.g.,
disconnection from the parent node in the routing tree) or
changes to energy availability, triggered by IDEA. The IDEA
component residing on each sensor node evaluates the energy
objective function O for each possible client state, which is
combined with the client utility function u to determine the
next state s’. In the following sections we describe each
component of the architecture in more detail.

3.4 Monitoring and Modeling

IDEA relies on the ability to measure and model load and
charging rates at each sensor node. This can be performed
using either hardware support, as in systems like Quanto [8],
or using software monitoring, as in Pixie [20]. Modularizing
these components allows IDEA to easily support multiple
node platforms and a variety of energy-harvesting hardware.

IDEA monitors both the energy load on a node as well
as the charging rate, both represented as joules per second.
The battery level is monitored as well. The raw measure-
ments are used to build models that allow IDEA to estimate
the projected future energy load and availability. In addi-
tion, the model parameters are distributed to other nodes
in the network, allowing those nodes to estimate the source
node’s energy load and charging profile over time.

In the routing case referenced previously, while a node’s
choice of parent impacts all nodes between it and the sink,
it can only directly control the load placed on its parent.
The impact on nodes farther downstream is a function of
other local choices.

IDEA provides a component that models load or charging
rates by producing an average across a fixed time window,
which over time produces a piecewise-linear model of varying
load or charging rates. To estimate the load on a single node

faeLn(t)d .
n at time ¢, L,(t), we compute [,, = %, and dis-

tribute our estimate [,, as the single model parameter. This
simple model must distribute new parameters to incorpo-
rate time-varying load or charging rates. However, IDEA’s
modeling architecture is modular and it would be straight-
forward to incorporate more sophisticated charging models
based on understanding of the underlying dynamics of the
energy harvesting technique being used. A seasonal ARIMA
model like that used by PRESTO [19] would provide more
accuracy when projecting future charging behavior.

IDEA distributes the battery level By (to) at the time to
when it updates the load or charging model parameters. To
estimate the battery level at time t1, B,(t1), we integrate
the load and charging models, such that B, (t1) = Bn(to) +
S :01 Cn(t)dt— f:ﬂl L, (t) dt. Integrating the simple load model
is straightforward: fttol L, dt = (t1 — to) * ln. Other models
may require more complex techniques.

We separate the modeling of load and charging rates for
two reasons. First, load and charging rates vary for dif-
ferent reasons: load fluctuates with application demands,
whereas charging rates fluctuate with environmental varia-
tions. Disentangling energy inputs and outputs facilitates
more accurate modeling. Moreover, independent modeling
of load and charging allows IDEA to accurately model times
when a node’s battery is exhausted. While a node is run-
ning its overall current draw I, = C,, — L,. If I,, > [,
where 3 is a threshold current necessary to enable battery
recharging, then the node is charging its battery; otherwise
it is discharging. Once the node dies, however, we assume
that L, = 0 and I,, = C,,. Assuming future energy inputs,
a node that has completely drained its battery will be able
to recharge and rejoin the network once it has charged its
battery past a certain threshold.

Maintaining the accuracy of load and charging models
on external nodes requires periodically distributing updated
model parameters. IDEA modeling components monitor the
accuracy of the model they have previously distributed. Us-
ing our simple linear model as an example, if [%0 is the model
parameter distributed for node n at time to, then at time
t1 the model will recompute lﬁ}. If the relative model error

i)

i
tolerance, then the modeling component will push a new pa-
rameter to the data sharing layer, which is responsible for
updating other nodes.

> E, where E is an application-configurable error

3.5 Data Sharing

In order for nodes to make informed decisions about local
state changes, they must have knowledge of the energy pro-
files of other nodes. IDEA provides a data sharing compo-
nent that distributes this information amongst nodes in the
network. The distribution service maintains a local shared
data table allowing estimated energy information for other
nodes — including their battery levels B;, load rate L;, and
charge rate C; — to be queried. Estimates are produced
by evaluating the load and charging models as described
previously. Note that these values can be queried more fre-
quently than the underlying model parameters are updated.



The use of models allows IDEA to significantly reduce the
amount of communication and energy required to distribute
this information. Of course, data sharing itself consumes en-
ergy. However, our evaluation in Section 5 shows that this
overhead is recouped in improved overall energy efficiency.
IDEA provides a k-hop data sharing component that dis-
seminates shared data updates using broadcast messages.
This approach is similar to neighborhood communication
schemes such as Abstract Regions [32] and Hoods [36]. We
use a Trickle [18] timer to balance rapid propagation of up-
dates with eventual consistency in the face of link failures.
New updates cause the Trickle timer to be reset, causing im-
mediate data propagation. Nodes hearing the update relay
it until the maximum number of retransmissions is reached.
We also utilize broadcast packets to opportunistically re-
transmit data for other nodes to reduce propagation latency.
When retransmission is triggered, a node fills the broadcast
packet with other recent updates from its shared data table.
IDEA clients may piggyback on this mechanism to propa-
gate application-specific data to other nodes. For example,
nodes may wish to share information on MAC parameters to
enable coordinated communication scheduling. To simplify
the implementation of the data sharing service we limit the
amount of space available to client applications to ensure
that the total payload fits within a single radio message.

3.6 Client Integration

The interface between client components and IDEA is in-
tended to simplify integration of IDEA with existing soft-
ware. The IDEA optimizer provide chooseState(), an in-
terface that the client can invoke to select a new state in an
energy-aware fashion. Normally components may reexamine
state periodically to ensure that they respond to changes in
network dynamics. IDEA also provides event triggers that
indicate when nearby energy conditions have changed signif-
icantly, since these may also be opportunities for clients to
reevaluate their local state selection. chooseState() takes
three arguments:

e A list of possible local states s™ = {s7, s3, ..., s} that
the client component on node n can enter;

e For each state si, the intrinsic utility u(s}) of that
state, represented as a scalar value; and

e For each state s}, a projected energy load vector L(s})
representing the estimated energy impact (in terms of

joules/sec) induced by the node entering state si. L
has one element for each of the node’s neighbors.

IDEA combines this information with knowledge of energy
load and availability to determine the ideal state s’ the node
should enter based on the weighted combination of the ob-
jective function O and the utility . chooseState() returns
the new state s’ selected by the optimizer. To reduce the
possibility of two or more nodes oscillating between different
states, hysteresis can be added to the objective function to
avoid wasting energy through frequent reconfiguration.

In many cases it is straightforward to interface IDEA to
existing code. As we demonstrate in Section 4, IDEA has
been used to add energy awareness to the CTP [11] routing
protocol with minimal code changes. Existing software com-
ponents can be supported by wrapping them in code that
estimates energy impact, enumerates states, and interfaces
to the IDEA service.

4. CASE STUDIES

Throughout the rest of the paper we demonstrate IDEA
using three examples. Section 5 presents results demon-
strating the performance improvements that IDEA delivers
for each application.

4.1 LPL Tuning

Low-power listening enables radio duty-cycling without
requiring nodes arrange fixed transmission schedules. It
is well-suited for environments where network topologies
and traffic patterns are highly variable, since these varia-
tions challenge duty-cycling techniques that assume a priori
knowledge of traffic patterns.

When using LPL, nodes poll the radio channel at a fixed
rate, listening for packets addressed to them. The radio is
shut off when not polling or sending packets. To send a
packet to another node the sender must know that node’s
polling interval, and repeatedly send the packet with re-
duced MAC backoffs until either the packet is acknowledged,
ending the packet train and indicating a successful transmis-
sion, or the length of the packet train exceeds the receiver’s
polling interval, at which point the transmission fails.

The choice of LPL polling rate at a given node affects
the continuous energy drain required to periodically poll the
channel as well as the cost to other nodes to communicate
with the given node. Assuming we model the radio as draw-
ing Ijisten and Itransmit mA of current in listen and transmit
modes, respectively, then, given an interval between radio
checks of 7 sec, the current draw required to poll the chan-
nel is %-tcheck liisten, Where tepeck 18 the time the radio must
remain on to detect channel activity. The cost to transmit
a packet to a node using an LPL interval of v is, on aver-
age, 3 - Itransmit. We can observe then that increasing ~ or
polling the channel less frequently reduces the current draw
on the receiving node while increasing the communication
cost on sending nodes.

On the CC2420 the receive and sends costs Ijistern and
Lirasmit are similar, and the radio can rapidly leave and
return to a low-power state so tcpeck is short, on the order of
10 ms, allowing the continuous receive cost to be minimized.
As a point of comparison, using a 0.5 second check interval
produces a current draw of 0.37 mA while requiring 4.35
mAs to send a single packet. Put another way, sending a
single packet requires as much energy as polling the channel
for over 11 seconds.

Adjusting LPL intervals offers a way of changing the en-
ergy consumption for communication between two nodes,
and an opportunity for IDEA to tune the intervals to match
the availability of energy within the network. To develop
intuition about the tuning process, we consider a simple ex-
ample where Node 1 is transmitting packets to Node 2. If
Node 1 has a lot of energy while Node 2 has little, then Node
2 should poll the channel slowly and let Node 1 pay the high
per-packet penalty. On the other hand, if Node 2 has a lot
of energy while Node 1 has little, then Node 2 should poll
the channel rapidly, increasing its own energy consumption
but reducing the per-packet cost to Node 1.

IDEA allows us to build a component to tune the LPL
parameters on each node adaptively. Our local state space
Sn = {sfm s, sibo} where sJ, corresponds to polling at in-
tervals of 2/ on node n. For each state s?,, we construct the
projected energy load vector L(s%) out of two components:
one measuring the receive cost to node n, the other measur-



ing the transmission cost to other nodes to send to node n.
The receive cost on node n, 7., has only a single component
for node n, ri(sd) = % -0.010sec-19.7 mA, where 0.010 sec
is the check interval and 19.7 mA is the radio receive current.
The transmission cost to nodes sending to node n, tn, has

components of the form t},(s3,) = 3 - %sec -0(i,m) - 17.4
mA, where 6(i,n) is the rate at which node ¢ is sending
packets to node n and 17.4 mA is the radio transmission
current. We construct the total energy load vector Ln(s?)
as the component-wise sum of 7,, and #,,, and pass this in-
formation to IDEA to evaluate each state.

When the LPL tuning component switches states, it must
propagate this information to nearby nodes that might be
sending it data. We use the ability of IDEA to propagate
component state to disseminate this information. The tun-
ing component intercepts outgoing transmissions, queries
IDEA for the correct LPL interval to use for the given des-
tination, and sets the packet’s LPL interval accordingly.

Changing the LPL interval also effects the total through-
put possible over the link, which provides the component-
specific measure of desirability, although the relationship is
complicated by the ability of LPL to bunch transmissions to
amortize the cost of awakening the receiver. For our evalu-
ation we chose to set the tradeoff factor & = 1 and optimize
only for energy, since the throughput of the link was not a
limiting factor at the data rates we tested.

Finally, low-power probing (LPP) approaches available
in Contiki [2] and made possible by BackCast [4] improve
on the LPL approach by using receiver-initiated probing
to eliminate the high channel contention caused by LPL’s
packet trains. However, they produce similar energy con-
sumption patterns to LPL and could be tuned in the same
way. We have focused on tuning LPL parameters due to
LPL’s availability in the standard TinyOS distribution, but
are exploring LPP-based approaches as future work.

4.2 Energy-Aware Routing

The second example shows how to integrate IDEA with an
existing routing protocol, namely the Collection Tree Pro-
tocol (CTP) [11]. CTP is a spanning-tree routing protocol
that is a standard component in TinyOS [13]. In CTP, each
node selects its parent in the spanning tree based on the
expected number of transmissions (ETX) to reach the sink.
This is an additive metric intended to limit queue occupancy
at nodes along each routing path and maximize packet de-
livery rates. Although ETX can be directly converted to
an energy measure (assuming the energy costs to transmit
along a link are known), CTP does not explicitly consider
energy availability in its routing decisions.

We integrate IDEA with CTP to create ICTP, an energy-
aware load-balancing routing protocol that combines the use
of ETX with IDEA’s energy objective function. As described
in Section 3.2, we parameterize the tradeoff between pure
ETX and pure energy objective using the weighting factor
a. When a = 1 the minimum ETX path is always used
and ICTP behaves identically to unmodified CTP. When
0 < a < 1, potential parents with path ETX < minimum
ETX i will be considered, with the one producing the best
energy objective score chosen. When a = 0, ETX is not con-
sidered at all and parent selection is performed entirely on
the basis of energy. Hence, « indirectly controls the degree
of path stretch that is induced by energy awareness.

In order to build routes, CTP must periodically broadcast
the current parent and ETX to neighboring nodes. ICTP
adds additional information to these broadcasts, specifically
the expected power, or EPX, for transmissions to the node’s
parent. This information increases the size of the broadcast
packet sent by ICTP slightly, but does not appreciably affect
the energy consumption of the protocol’s own data sharing,
since the cost to transmit a packet using LPL is a function
of the receiver’s polling interval, not the packet size.

The local state space s, = {sB!,sP2 ... sh*} is defined
by the node n’s neighbors p, = {p17p27...,pk}, each of
them a prospective parent. CTP uses four-bit wireless link
estimation [10] to estimate the ETX to each neighbor, which
ICTP multiplies by the power-per transmission to produce
the EPX to each neighbor, EPX(n,p%). Through ICTP
data dissemination node n also learns the EPX from each
neighbor to their current parent, EPX (p’, parent(p’)). We
have modified CTP to measure the traffic rate §(n), which
is the number of packets per given interval that node n is
forwarding to the sink. This is a function of both its own
packet generation rate and of the traffic induced by nodes
upstream that it is routing for. Given these parameters the
projected energy load vector L(s%) has two components:
L. = EPX(n,ph) - 8(n) and L, — EPX(ph, parent(p},)) -
0(n). Based on this information, IDEA chooses the best
neighbor as the node’s parent.

Depending on the energy objective function chosen ICTP
responds to variations in load and charging rates in differ-
ent ways. For the following discussion we assume that the
application uses the mazimize first-node lifetime objective
function described in Section 3.2, and so is willing to trade
off reduced charging rates or lifetimes at nodes that are not
the network’s lifetime bottleneck in order to increase the life-
time of the node projected to die first. Routing trees by their
very nature concentrate load near the base station, which we
assume is powered. Without considering variances in non-
routing load or charging rates ICTP will attempt to balance
load across nodes that can communicate directly with the
base station, arranging the routing tree considering both the
number of nodes upstream from each of the base station’s
neighbors and the quality of their link to the base station.

ICTP also responds to spatial variations in charging rates
by building a tree that is sensitive to where in the network
energy is available. ICTP will route around shadows in the
network, or build routing backbones using quickly-charging
nodes or nodes whose batteries are full while attempting
to push nodes low on batteries into leaf roles, reducing or
eliminating their routing responsibilities.

Because ICTP reacts to changes in energy available by
potentially choosing routes with larger ETX, small values
of a can begin to effect the achieved packet delivery rate.
We were able to find values of a that produced significant
performance improvements while leaving the delivery rate
unaltered. CTP has a persistent retransmission policy which
assists us in achieving good performance.

4.3 Distributed Localization

The third case study illustrates how to use IDEA to con-
trol discrete, rather than continuous, network behavior. We
consider a system designed to perform acoustic source local-
ization. Several previous systems have explored this appli-
cation in different contexts, including urban sniper localiza-
tion [29] and localizing animals based on mating calls [1].



Using IDEA, it is possible to carefully manage the energy
load at each sensor node to prolong battery lifetime while
maintaining high localization accuracy.

Acoustic source localization involves calculating the loca-
tion of an acoustic source by collecting arrival times at sev-
eral stations and performing a back-azimuth computation.
We assume a dense sensor network deployment, so that an
acoustic event is detected by many sensors. We also assume
that for each event, any set of four sensors that heard the
event can correctly perform the localization to within the
application’s error tolerance.

A centralized approach to localization requires nodes to
transmit data to a base station where the computation is
performed. Because we assume that nodes cannot accurately
compute an arrival time by only considering their own sam-
pled data, they must transmit a sizeable amount of data to
the base station to implement the centralized strategy, with
the bulk data transfer required producing a significant load
on the nodes that heard the event as well as nodes required
to route data. This approach also does not scale well as the
size of the network increases.

To avoid the overheads of centralization we want to per-
form the localization inside the network. However, the cost
to transmit signals and perform the computation are still
high, so it is important that localization be done in a way
sensitive to the availability of energy within the network.

When an event occurs, the goal is to select a single ag-
gregator node and three signal provider nodes from the set
of nodes that detected the event. The signal providers will
transmit a portion of the acoustic signal to the aggrega-
tor, which performs the localization computation using a
time-of-arrival and angle-of-arrival computation [23]. For
each event we expect multiple valid aggregator and signal
provider sets to exist, each with its own energy consump-
tion signature. We refer to a selection of four such nodes as
a localization plan.

Nodes that heard the signal participate in a leader election
process, seeded by the value of the IDEA energy objective
function for each proposed localization plan. Each candidate
aggregator computes the energy objective function for the
localization plan or plans that they are the aggregator for. If
more than three nodes within a single hop of an aggregator
heard the event, then the aggregator will have multiple plans
to consider. The aggregator chooses the local plan with the
best score and broadcasts a message advertising that score,
which is propagated to all nodes that heard the event. If the
aggregator does not hear a broadcast with a better score,
it assumes that it won the leader election and proceeds to
perform the localization as planned.

5. EVALUATION

To evaluate IDEA, we build and test the two energy-aware
components and one energy-aware application described in
Section 4. For the LPL tuning and routing components,
we compare the performance of our IDEA-based implemen-
tations to approaches that are not energy-aware. For the
third application, we use IDEA to implement several energy
objective functions and compare their performance against
each other and against a heuristic that does not consider
energy availability.

5.1 Experimental Setup

Throughout the evaluation we present results run in sev-
eral different environments. We have implemented IDEA for
TinyOS in order to run experiments on MoteLab [35], our
180 node wireless sensor network testbed. We also present
results obtained using TOSSIM [17], the TinyOS simulator.
TOSSIM incorporates a closest-fit pattern matching noise
model to accurately capture complex link dynamics [16].
TOSSIM allows us to run longer experiments incorporat-
ing various solar charging models. To improve the realism
of TOSSIM we began with a modified version developed for
the Koala project [26] and performed further modifications
to correctly simulate the operation of LPL. We use informa-
tion collected on MoteLab to build a realistic TOSSIM radio
model for our simulations. Finally, for the third application
we built a Python simulator to allow rapid prototyping of
various energy objective functions.

IDEA is designed to tune components in the face of vari-
ations in both load and charging rates, and to test this we
present experiments using solar charging data collected off
of a solar panel deployed on an Arlington, MA rooftop in
March, 2009. Battery levels are calculated using a charging
model based on a Nickel-Metal Hydride battery technology
with a 66% charging efficiency. We attenuate this data to
simulate the charging produced by solar panels of several
different sizes in order to evaluate IDEA’s performance as
available energy changes. We also perform experiments with
a randomly attenuated charging profile to simulate bad solar
panel placement or obstacles to incident sunlight effecting
the spatial distribution of collected energy.

For our MoteLab experiments we determine the system’s
ability to span periods without charging inputs. We use
two sets of initial conditions based on the interaction be-
tween the charging data we collected and the capacity of
the batteries deployed. If the solar panel is large enough
it will provide considerable charging input and completely
charge small batteries during the day, so that all nodes be-
gin the night with full batteries. If the solar panel is not
large enough to completely charge the batteries nodes will
begin the night with varying amounts of charge depending
on their load rates during the day.

Energy tracking is done by IDEA using a software-only
approach developed for the Pixie [20] project. The compo-
nent captures state transitions and applies an energy con-
sumption model for each state based on current consumption
measured offline. In the future we would like to integrate a
more accurate hardware-driven approach such as iCount [3].
The short lifetimes for some experiments are explained by
the use of extremely small batteries, which were chosen to al-
low experiments to complete in reasonable amounts of time.
We expect that application developers will want to use a
battery size and charging technology suitable to allow their
system to achieve a desired level of performance, and the
improvements in energy efficiency possible using IDEA will
allow smaller batteries or solar panels to be used, reducing
the size and cost of the hardware package.

Experiments for the LPL tuning and energy-aware rout-
ing cases use the first-node death energy objective function
described in Section 3.2, and therefore we evaluate the net-
work lifetime as the time at which the first node runs out of
energy. Our distributed localization application illustrates
the process of designing an effective energy objective func-
tion when the overall goal of the system is known.



Initial Battery | Lifetime (hours) Increase
Levels Static  Tuned (%)
Uniform 4.6 5.6 22%
Random 2.8 3.0 7%

Table 1: LPL tuning performance on MoteLab. The
table shows results for MoteLab experiments com-
paring the performance of the IDEA-driven LPL
tuning component against the best static parame-
ter solution. IDEA shows gains for both the case
where all nodes start with the same battery level
and randomly initialized battery states.

5.2 LPL Parameter Tuning

We begin by evaluating the IDEA-driven LPL parameter
tuning component described in Section 4.1. Figure 1 sum-
marizes the results of experiments conducted on a 20 node
subset of the MoteLab sensor network testbed. We config-
ure the nodes into a collection tree with each node send-
ing messages to the sink once every 2 minutes. As a point
of comparison we ran experiments using static intervals as-
signed a priori, with all nodes using the same LPL interval.
We compared the results from all six intervals and picked
the one that performed the best. Note that this experimen-
tation itself is a form of tuning and would be difficult to
do beforehand. We ran one hour testbed experiments and
used each node’s rate of energy consumption to compute a
projected lifetime.

The table shows that the tuned LPL intervals produce im-
provements in projected lifetimes when compared with the
best static interval under both non-charging scenarios dis-
cussed in Section 5.1. We observe an improvement of 22%
for the case where nodes start with the same initial charge
and 7% when random initial battery levels are used. This is
despite the fact that the LPL tuning component produces
significant overhead propagating new state early in the ex-
periment as nodes are moving from their initial states into
their IDEA-tuned intervals.

Figure 2 summarizes results from experiments performed
on TOSSIM that include solar charging inputs discussed
above. IDEA provides 5% and 10% performance improve-
ments for cases in which all nodes see the same input charg-
ing profile and a 35% improvement in the case where charg-
ing inputs are randomly attenuated. We believe that this
is due to the increased difference in battery levels due to
the random attenuation, which creates more diversity in the
amount of available charge. The table also shows numbers
that indicate the best that IDEA can do when its overhead is
artificially eliminated, showing that future work on improv-
ing the load and charge modeling and more efficient data
sharing will continue to improve performance.

In the non-charging case we can produce an offline-optimal
estimate of the possible performance by treating the problem
as a multi-dimensional, multiple-choice knapsack problem
and computing a solution. We use the optimal solution as a
qualitative point of comparison in Figure 4, which shows the
differences between intervals picked by the IDEA-driven and
optimal solutions for a non-charging TOSSIM experiment
using a 20 node tree, shown in Figure 3. Most nodes are
leaf nodes and IDEA correctly choose the maximum interval
possible. IDEA chooses near-optimal intervals for Node 21,

Figure 3: Topology used for LPL tuning experiments.
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Figure 4: LPL interval comparison with optimal. To
assess the degree to which the IDEA-driven ap-
proach finds a near optimal global state we plot the
percent difference between the intervals chosen by
the IDEA-tuned and offline optimal systems. The
plot demonstrates that IDEA sets the LPL intervals
of nodes similarly to the optimal solution and helps
explain its performance.

the energy bottleneck (within 1% of optimal) and the worst-
case, Node 118 (the sink), was still within 15% of optimal.

We also use the optimal results to examine the impact
of the overhead of the IDEA LPL-tuning component as we
vary the rate at which updates are performed in the sys-
tem. IDEA can vary how often nodes evaluate their LPL
intervals as well has how often to evaluate load and model
parameters. A more frequent evaluation of LPL intervals
allows the system to more quickly react to changes in the
network with the potential of higher energy costs as more
state changes may need to be propagated across the net-
work. By the same token, more frequent evaluation of load
and charge model parameters allow IDEA to quickly react
to fluctuations in energy in the network, but may result in
more energy consumed as new models must be propagated
via the data sharing mechanism.



Solar Charging Lifetime (hours) Increase
Pattern Static Tuned No Overhead (%)
Large Panel 22.7 23.8 24.0 5%
Small Panel 16.8 18.9 21.2 13%
Randomly

Attenuated 13.8 18.6 20.4 35%

Table 2: LPL tuning performance with solar charging. This table displays results for TOSSIM experiments
comparing IDEA-based LPL parameter tuning with the best static interval and an overhead-free version of
IDEA. IDEA shows gains over the non-tuned approaches across a range of different solar charging profiles.
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Figure 5: Optimality and overhead. IDEA consumes
energy in order to propagate load, charge, and state
information. For the LPL-tuning component the en-
ergy overhead is related to the rate at which we re-
tune the local LPL interval, load model, and charge
model. This plot shows both the IDEA overhead
and the degree of optimality achieved as the update
rate is varied.

Figure 5 shows the variation in lifetime, plotted as percent
of the optimal solution, and the percent overhead used by
IDEA overall, as well as the subset of IDEA energy used for
tuning the LPL parameters as we vary both the LPL and
load model evaluation rate.

As we decrease the update rate, model parameters are
shared less frequently and the network consumes less energy,
causing the overhead to decrease. LPL tuning overhead re-
mains relativity constant as the workload for this applica-
tion is static and most evaluation periods do not produce
a change in LPL intervals. For this application the life-
time curve shows the best results with an update rate of 15
minutes. At the left end of the curve with a rapid update
rate the overheads associated with data sharing reduce the
systems lifetime, and at the right end of the curve the sys-
tem is slower to find the optimal state and may spend some
time with sub-optimal intervals and the lifetime again suf-
fers. Across the entire range, however, the achieved network
lifetime remains above 74% of the optimal offline solution.

Figure 6: Qualitative comparison of stock CTP and
ICTP. For this experiment odd-numbered nodes
(shaded) were set to charging rapidly, while even-
numbered nodes were not charging. Unmodified
CTP builds the tree shown in (a), which routes many
packets through the even nodes. ICTP builds the
tree shown in (b), which moves all even nodes to
leaf roles.

5.3 ICTP: Energy-Aware Routing

Using IDEA we were able to integrate energy awareness
into CTP, the routing protocol included as part of TinyOS.
For these experiments each node in a 20 node network is
sending packets to the sink at the rate of 6 packets per sec-
ond. Static LPL intervals of 0.5 second were used.

Figure 6 shows a qualitative demonstration of the differ-
ences between energy-aware and non-energy-aware routing
trees. This TOSSIM simulation ran with all odd numbered
nodes charging rapidly and all even numbered nodes not
charging (with the exception of the sink, Node 118, which
we assume is powered). While this is an unrealistic charging
pattern, it produces a clear difference in the routing pro-
tocol behavior. Figure 6(a) shows that unmodified CTP is
unaware of these charging differences and puts several even
nodes, such as Node 92, into positions where they are rout-
ing for multiple nodes. The total number of nodes upstream
from even numbered nodes in the stock CTP case is 14. In
contrast, ICTP realizes that the odd-numbered nodes have



Solar Charging Lifetime (hours) Increase
Pattern CTP ICTP (%)
Large Panel 17.1 19.0 11%
Small Panel 10.5 13.3 27%
Random Attenuation | 10.5 12.2 16%

Table 3: ICTP performance with solar charging. The
table summarizes the improvements in performance
obtained by replacing CTP with ICTP. Three dif-
ferent solar charging profiles are used correspond-
ing to a large panel that completely charges all bat-
teries during the day, a small panel that does not
completely charge all batteries during the day, and
a randomly attenuated charging profile that varies
node-to-node.

energy to spare and the even-numbered nodes are lacking,
and moves all even nodes to leaf roles. None of the even
nodes in Figure 6 are routing data.

Using a setup similar to that described in Section 5.2,
we compared the performance of ICTP to unmodified CTP
using 24-hour TOSSIM simulations and the three different
solar charging scenarios previously described. As Table 2
shows, ICTP shows improvements in lifetime over stock
CTP of between 11 and 27%. The different routing trees
formed by ICTP did not effect the packet delivery rates ap-
preciably with the largest change in packet delivery rate be-
ing 2.8% (97.8% for CTP vs. 95.0% for ICTP).

Finally, Table 4 shows how IDEA can trade off application
utility with the energy objective function. The simulation
experiment uses a 25 node grid topology and, similar to
the previous experiment, half the nodes are charging rapidly
while the other half are not. Here our application-defined
metric is expected transmissions to reach the sink (ETX). A
purely ETX-based tree will use the shortest route without
routing around the uncharging nodes, whereas an energy-
aware tree will avoid the uncharging nodes by constructing
longer routes. We expect that, prioritizing ETX will cause
the total ETX of the entire tree — defined as the sum of the
ETX of all the routes in use — to decrease, while prioritizing
energy performance will cause the first-node lifetime of the
tree to increase.

Indeed, Table 4 confirms this is the case. For each ex-
periment, we restrict the set of acceptable parents to be the
minimum available parent ETX plus an extra amount we
call the ETX search margin. For example, if the minimum
available parent ETX is 5 and the ETX search margin is 10,
then we will consider all parents with ETX < 15. As the
search margin increases, IDEA will examine longer routes
that may provide better energy performance. As the table
shows, increasing the ETX search margin leads to longer
average routes but also improves overall network lifetime.

5.4 Distributed Localization

To evaluate the distributed localization application we
built a Python simulator, which improves significantly on
TOSSIM performance at this scale and allowed rapid it-
eration and experimentation with different energy objec-
tive functions. Our simulator models acoustic event sources
within the sensor network, each of which triggers a dis-
tributed localization operation. The energy overheads of
communication, both the leader election process and the

ETX Search Total ETX Network Lifetime
Margin (ETX) (ETX) (sec)
0 2442 4357
10 2591 4737
20 3207 5116
50 3127 6216
100 3442 6502

Table 4: Tradeoff between energy-awareness and ap-
plication utility. The table shows results illustrating
how IDEA can parameterize the tradeoff between
optimizing for application-defined utility and the en-
ergy objective function.

subsequent data transfer, are modeled in the simulator based
on empirical measurements taken on our MoteLab testbed.

For these experiments we arranged 100 nodes into a 100 m
by 100 m area, resulting in the placements shown in Figure 7.
We simulate a sensing range equal to the communication
range, each set to 20 m, and randomize the reliable trans-
fer protocol bandwidth across each link to between 768 and
1280 bytes/sec, a feasible range based on results from data
transfer protocols such as Flush [14] and Fetch [34]. Events
are simulated using a uniform random distribution so that
events have equal probability of occurring anywhere in the
sensor field.

To evaluate network performance, we define capability of
the network as the percent of the last 100 operations that
succeeded, where success is defined as localizing the event.
We assume that the application requires that the network
be able to localize 90% of events that occur, and design our
energy objective functions with this in mind. We quote the
system lifetime as the the 90% capability time, that is the
time at which the network’s capability drops below 90%.

We experimented with several approaches to choosing a
localization plan, one that does not use IDEA and three
that do using different energy objective functions:

1. Closest: produces a localization plan with the node
closest to the event source as the aggregator and the
next three closest nodes as signal providers. We as-
sume a real solution would use an imperfect estimate
of proximity such as total signal energy or signal-to-
noise ratio, but for the simulations we use the known
simulated event location to choose the closest nodes.
Closest does not require energy state information and
so could be implemented without IDEA. It is imple-
mented as an example of a plausible non-energy-aware
solution.

2. MaxEnergy: chooses the node with the most energy
(that heard the event) as aggregator and the next three
highest-energy nodes as signal providers.

3. TotalEnergy: chooses the localization plan that
consumes the lowest amount of total energy summed
across all nodes in the network.

4. WeightedEnergy: weights the total energy consump-
tion using a similarity metric derived from the cosine
similarity index to measure the degree to which the
energy vector for the localization plan is a good “fit”
given the current energy availability.
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Figure 7: Energy density over time. Energy densities for the Closest heuristic and IDEA using the Weighte-
dEnergy objective function are shown at four points in time. The event distribution is uniform. IDEA enables
better load distribution, which leads to a longer application lifetime.
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Figure 8: Performance of IDEA objective func-

tions and heuristic. Simulation results are shown
for the localization application. The graph com-
pares the Closest heuristic, implemented without
using IDEA, against three different IDEA objec-
tive functions: MaxEnergy, TotalEnergy and Weighte-
dEnergy. The WeightedEnergy approach using IDEA
outperforms the non-energy-aware approach while
the other objective functions perform more poorly.

We began by experimenting with the Closest, MaxEnergy
and TotalEnergy approaches. As Figure 8 shows, the Clos-
est heuristic outperformed the two IDEA-based approaches.
However, when examining the energy density plot shown in
Figure 7 for the Closest heuristic we could see that it led
to concentrations of available energy on nodes at dense loca-
tions on the irregular grid. This is despite the uniform dis-
tribution of acoustic event sources, which one might expect
to produce good energy load distribution without the need
for tuning. After exploring several additional approaches

we found an energy objective function capable of producing
extremely good load distribution, the WeightedEnergy ap-
proach described above. Figure 8 shows that it outperforms
Closest, increasing the network’s lifetime by 15%, while
Figure 7 illustrates how it utilizes all the nodes’ available
energy. Our experience with the localization application il-
lustrates the role of the proper energy objective function in
enabling good application performance, and points to the
increases in system lifetime possible through better energy
distribution.

6. RELATED WORK

Previous work has addressed the problem of energy load
balancing in contexts such as sensor coverage, role assign-
ment, and energy-aware routing. Other efforts in sensor
networks have focused on reducing the power consumption
at individual nodes without considering energy distribution.
Many of these efforts are specific to a particular application
or component and do not provide a service like IDEA that
can be used by a variety of applications.

A number of existing systems such as Odyssey [6], Power-
Scope [7] and more recently Cinder [27], have addressed mea-
suring or adapting to energy variations on battery-powered
devices, primarily to support mobile applications. This nat-
urally produces a difference in approach from IDEA, since
IDEA targets networks consisting of multiple nodes but
treated as a single entity. Since nodes are collaborating we
can enable more sharing and ask nodes to sacrifice for each
other, whereas mobile device users would likely be upset if
they discovered that their phone was running low on power
because it was trying to improve the lifetime of a stranger’s
phone located nearby.

Quanto [8] provides a framework for tracking and un-
derstanding energy consumption in embedded sensor sys-
tems. The existence of systems like Quanto was a pri-
mary motivation for IDEA, since the visibility distributed re-
source tracking provides creates an opportunity to adapt to
changes in availability across the network. Currently IDEA
requires that components model their own energy consump-
tion, which may be difficult for components with complex



behavior. We are exploring integrating Quanto into IDEA
to provide more precise tracking of energy at runtime, which
could eliminate the need for component-specific modeling
and ease the process of integrating applications with IDEA.

Eon [30] performs similar energy tracking and forward
projection but focuses on single-node, not network-wide
adaptations. SORA [22] focuses on decentralized resource
allocation based on an economic model in which nodes re-
spond to incentives to produce data or perform specific
tasks, with each node trying to maximize its profit for taking
a series of actions. While SORA, using correctly set prices,
could produce similar network-wide behavior to that enabled
by IDEA, the connection between prices and the behavior
of the network is not completely clear. IDEA simplifies the
problem of global network control through the energy objec-
tive function which directly expresses the application’s goal.

Some work on energy-aware routing [28, 38] has addressed
equitable energy distribution within the network by proba-
bilistically choosing between multiple good paths between
each source and sink pair. LEACH [12] and other simi-
lar approaches attempt to distributed energy in an entirely
decentralized way, using local heuristics to do so. Lexico-
graphically maximum rate allocation [5] uses a decentralized
algorithm to tune optimum data collection rates in perpet-
ual networks when static routes are used, all nodes route
to a single sink, and the recharging profiles of the nodes are
known ahead of time. Rate allocation could be implemented
in IDEA and comparing the two is planned future work.

EnviroMic [21] is a distributed acoustic storage system for
sensor networks. When EnviroMic nodes hear an acoustic
event, a leader is elected to assign recording tasks to nodes in
the group. As storage space is limited, EnviroMic attempts
to push data to quiet sections of the network with unused
storage, balancing storage consumption across the network.
Both of these tasks involve choosing from a set of nodes that
can perform the same storage task, and so EnviroMic could
be integrated with IDEA allowing the energy overheads of
data transfers to be considered.

The IDEA architecture emerged from our own prior work
on energy management for wireless sensor networks, includ-
ing Lance [33], Pixie [20], and Peloton [31]. Lance focused
specifically on the problem of bulk data-transfer using re-
source vectors and centralized control. By balancing the
value and distributed cost of retrieving sampled signals we
enable near-optimal performance. Pixie proposed an operat-
ing system and programming framework for sensor network
nodes that promotes resources to a first-class primitive, us-
ing tickets to manage resource consumption and brokers to
enable specialized management policies. Pixie does not con-
sider the energy impact of a node on other nodes.

Peloton proposed an architecture for distributed resource
management in sensor networks combining state sharing,
vector tickets to represent distributed resource consump-
tion and a decentralized architecture in which nodes serve as
ticket agents managing the resource consumption of them-
selves and on behalf of nearby nodes. IDEA shares many
features with Peloton and can be viewed as the beginnings
of an implementation of the Peloton design, with data shar-
ing to enable energy decision making and every node serving
as a ticket agent for itself but considering the distributed im-
pact of its own local state.

7. FUTURE WORK AND CONCLUSIONS

As future work we are interested in addressing the problem
of cross-component interaction in order to optimize several
IDEA components running simultaneously. This is compli-
cated by the fact that there are likely to be dependencies
between components that cause decisions made by one to
affect others. As an example, the LPL intervals used by a
node would effect the power cost to use the link seen by the
routing protocol. In addition we are investigating ways to
model the impact of node failure on other nodes. Many sen-
sor network protocols will try to work around nodes leaving
the network or going offline, but this repair process is costly
and causes load within the network to shift.

To conclude, we have described the IDEA architecture
in detail, motivated its use through three examples, and
demonstrated that for each example IDEA can improve
performance by better managing distributed energy re-
sources. We have also discussed the process of developing
an application-specific energy objective function and shown
how this can improve the performance of a localization
application while maintaining application fidelity.
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