
Safe and Efficient Hardware Specialization of Java Applications

Matt Welsh
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720-1776 USA

mdw@cs.berkeley.edu

Abstract

Providing Java applications with access to low-level
system resources, including fast network and I/O inter-
faces, requires functionality not provided by the Java
Virtual Machine instruction set. Currently, Java appli-
cations obtain this functionality by executing code writ-
ten in a lower-level language, such as C, through a native
method interface. However, the overhead of this inter-
face can be very high, and executing arbitrary native
code raises serious protection and portability concerns.

Jaguar [37] provides Java applications with efficient

access to hardware resources through a bytecode spe-

cialization technique which transforms Java bytecode

sequences to make use of inlined Jaguar bytecode which

implements low-level functionality. Jaguar bytecode is

portable and type-exact, making it both safer and more

efficient than native methods. Jaguar requires that the

target JVM or compiler recognizes Jaguar bytecode,

which is a superset of the Java bytecode instruction set.

We describe two implementations of Jaguar: one based

on a static Java compiler, and the other which uses a

standard JVM coupled with a Jaguar-enabled just-in-

time compiler. The JIT compiler applies code patches

to the original Java bytecode, stored in the form of an-

notations in the Java class file. We demonstrate that

Jaguar-specialized Java applications perform as well as

C for a set of communication benchmarks, and that the

code patching technique involves minimal compile-time

overhead.

1 Introduction

Java [14] is becoming increasingly popular for
large-scale server applications, including Internet
services [27, 34], databases [16], and parallel pro-
cessing [40, 24]. To obtain high performance, these
applications need to make use of specialized hard-
ware and O/S interfaces, such as fast cluster net-
works [32], asynchronous I/O [23], and raw disk ac-
cess [17]. To date, few Java systems have striven to

take full advantage of these interfaces, instead fo-
cusing on the other aspects of performance, such as
compilation [18], garbage collection [1], and thread
performance [2].

Traditionally, Java applications make use of low-
level system functionality through the use of native
methods, which are written in a language such as C.
To bind native method code to the Java application,
a native method interface is used, which has been
standardized across most JVMs as Sun Microsys-
tems’ Java Native Interface [29]. However, the use of
native methods raises two important concerns. The
first is performance: the cost of traversing the na-
tive method interface can be quite high, especially
when a large amount of data must be transferred
across the Java-native code boundary. The second
is safety: invoking arbitrary native code from a Java
application effectively negates the protection guar-
antees of the Java Virtual Machine. These two prob-
lems conflate, as programmers tend to write more
application code in the native language to amortize
the cost of crossing the native interface.

We have developed a system called Jaguar [37]
which provides applications with efficient and safe
access to low-level system resources. This is accom-
plished through a bytecode specialization technique
in which certain Java bytecode sequences are trans-
lated to low-level code which is capable of perform-
ing functions not allowed by the JVM, such as direct
memory access. Because this low-level code is in-
lined into the Java application at compile time, the
overhead of the native interface is avoided. Also,
aggressive optimizations can be performed on the
combined application and inlined Jaguar code.

Our original prototype of Jaguar, described
in [37], made use of a Java just-in-time (JIT) com-
piler which recognized certain bytecode sequences
and translated them to x86 machine code directly.
This approach is both non-portable and error-prone,
requiring that the machine code sequences be tai-
lored for the particular combination of JVM, JIT,



and machine architecture. It also requires non-
trivial changes to the JIT compiler to recognize and
translate Java bytecode sequences.

This paper presents a new design based on trans-
lating Java bytecode to Jaguar bytecode, which is a
superset of the Java instruction set. Jaguar byte-
code is used to represent low-level operations oth-
erwise unsupported by the JVM. Jaguar bytecode
contains two additional instructions — peek and
poke — which are used to perform direct memory
access. Application programmers are not permit-
ted to make use of these instructions; rather, they
are restricted to use within Java-to-Jaguar trans-
lation rules. Because Jaguar bytecode is portable,
type-exact, and inlined directly into the Java appli-
cation, it is both safer and more efficient than using
native methods for low-level operations.

We present two implementations of Jaguar based
upon this design. The first makes use of a static
Java compiler to translate Jaguar bytecode to ma-
chine code. The second uses a modified JIT com-
piler which applies a “patch” to produce Jaguar
bytecode at compile time; this mechanism requires
Jaguar support only in the JIT compiler, and is
fully compatible with unmodified JVMs. Both ap-
proaches relegate the (relatively expensive) trans-
lation from Java to Jaguar bytecode to a portable
front-end compiler, minimizing the complexity im-
pact on the back-end compilers.

2 Motivation and Background

Much previous work has addressed the CPU-
related aspects of Java performance, including com-
pilation [28, 18, 11], thread synchronization [2], and
garbage collection [30]. However, Java I/O per-
formance remains largely uninvestigated. Imple-
menting high-performance communication and I/O
in Java requires two classes of operations which
the Java Virtual Machines does not directly sup-
port. The first is direct access to I/O device inter-
faces, including user-level network interfaces [35, 32]
and raw disk I/O [17]. These mechanisms gener-
ally require the use of specialized system calls, or
even memory-mapped interfaces which circumvent
the O/S kernel entirely. The second is the use of
explicitly-managed memory regions. For example,
user-level network interfaces often require that com-
munication buffers be pinned to physical memory
for direct access by the NI hardware; these pages
must be allocated from a special pool or pinned dy-
namically by the O/S or NI [36]. Memory-mapped
files are often used for I/O, and raw disk interfaces

usually have special requirements for buffer alloca-
tion. However, this requirement runs counter to the
existing Java model in which all objects and arrays
are allocated from a single heap, managed by the
JVM’s garbage collector.

Native methods are the traditional mechanism
by which these operations are implemented in Java.
Native methods permit the binding of arbitrary
code written in a lower-level language (such as C)
to the Java application. Apart from raising serious
protection and safety concerns, native methods are
not well-suited for providing fine-grained, efficient
access to system resources. As we demonstrated
in [37], the Java Native Interface itself imposes a
large performance penalty, making them suitable
only for relatively long operations which pass only
a small amount of data across the Java-native code
boundary. Furthermore, native methods limit ex-
pressiveness, as native code can only be bound to
method invocation. Field access, operators, and
other Java operations cannot hook into the native
code interface in any way.

Several projects have attempted to bind fast
communication layers into the Java environment
through the use of native methods. Native method
bindings to MPI [13] and PVM [33] have been de-
scribed, however, neither of these have considered
performance issues with respect to obtaining low la-
tency or high bandwidth. Little work has been done
to support other types of I/O, although Sun Mi-
crosystems is currently considering new APIs sup-
porting asynchronous I/O interfaces [25].

Another approach is to extend the JVM or
Java compiler to provide special support for certain
classes, such as communication buffers [9], bulk I/O
interfaces [4], or JVM-internal data structures [8].
While this technique can provide a point solution
for particular communication and I/O interfaces, it
lacks generality and requires that significant new
functionality be incorporated into each JVM imple-
mentation. In addition, this functionality must it-
self be trusted, much in the same that native meth-
ods are.

The Jaguar approach is motivated by the obser-
vation that the sort of low-level operations required
for enabling high-performance communication and
I/O are generally short and easily expressed as a se-
quence of simple instructions (e.g., accessing a par-
ticular memory address, or invoking a system call).
This suggests that such operations can be inlined
into the compiled Java bytecode stream for perfor-
mance, and that some form of static analysis could
be performed to guarantee safety or type-exactness.

Jaguar is based on the concept of bytecode spe-
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Figure 1: The design of the Jaguar system. A front-end

compiler applies a set of translation rules to a Java class-

file to produce a Jaguar classfile, which is then compiled

by a back-end compiler to machine code.

cialization in which Java bytecode is specialized
at compile time to perform low-level operations.
Our original prototype of Jaguar, described in [37],
implemented this specialization through a set of
bytecode-to-machine code translation rules within a
JIT compiler. While this approach produces highly
efficient code, it is not very flexible. Because the
machine code is tailored for a particular JIT and
machine architecture, it is non-portable, making it
difficult to support Jaguar on another system. Also,
the bytecode translation rules themselves are com-
plex, making it difficult to add rules to support new
functionality. Also, implementing specializations in
low-level machine code does not allow that code to
easily verified for correctness.

3 Design and Implementation

Our original prototype of Jaguar [37] directly
translated Java bytecode sequences to specialized
x86 machine code within a JIT compiler. While this
approach performs well, it is desirable to represent
Jaguar specializations in a form that is portable and
verifiable for safety. Also, we wish to make it easy to
add Jaguar support to an existing JVM or Java com-
piler, thereby reducing implementation complexity
and allowing Jaguar to be widely deployed.

Our new design is based on Jaguar bytecode,
which is a superset of the Java bytecode instruction
set containing additional instructions which enable
access to low-level system resources. Bytecode spe-
cializations are represented as a set of translation
rules from Java bytecode to Jaguar bytecode. These
translation rules are applied by a front-end com-
piler which takes standard Java classfile as input,
and produces a Jaguar-specialized classfile as out-
put. The back-end compiler, which can be a static
or just-in-time compiler, translates Jaguar bytecode

Instruction Stack effect

<type>peek . . . , int address ⇒
. . . , <type> value

<type>poke . . . , int address, <type> value ⇒
. . .

Figure 2: Effect of Jaguar instructions on the Java

stack. <type> represents one of the Java primitive types

byte, short, int, or long.

to machine code. Our design is illustrated in Fig-
ure 1.

An example of a Jaguar translation rule is
to convert a call to a particular method (repre-
sented in Java bytecode using the invokevirtual,
invokestatic, or invokespecial instructions) to
a sequence of Jaguar bytecodes implementing some
low-level functionality, such as access to an I/O in-
terface. In this case, the original method is never
invoked; the call is replaced by inlined Jaguar byte-
code performing the low-level operation. Transla-
tion rules are not restricted to use on method calls:
object field accesses, operators, or any other se-
quence of Java bytecodes can be specialized as well.
For example, field accesses on an instance of a par-
ticular class could be translated into access to a
memory-mapped I/O device.

The Jaguar bytecode instruction set is machine-
independent and type-exact, allowing it to be effi-
ciently compiled on many architectures, and verified
for safety. These characteristics are mainly derived
from the fact that Jaguar bytecode is a superset of
Java bytecode. The current version of the Jaguar
instruction set includes just two additional instruc-
tions — peek and poke — which allow direct (vir-
tual) memory access by specialized bytecode. Each
instruction represents a memory address using a 32-
bit int on the Java stack.1 These instructions are
strongly typed, with variants for the Java primitive
types byte, short, int, and long. Therefore the peek
or poke instructions only accept and produce objects
of the given type on the Java stack; for example, the
ipeek instruction only produces a value of type int.
The effect of these instructions on the Java stack is
shown in Figure 2.

This typing does not of course guarantee that
the values read or written by peek or poke will con-
form to any particular type in the underlying mem-
ory representation. For example, a given memory
address could be subsequently accessed as either a
byte or an int. However, it does guarantee that spe-

1A later version of the instruction set will use a 64-bit long,
in anticipation of the use of Jaguar on 64-bit architectures.



cializations produced using these instructions will
be well-formed with respect to the Java stack; the
verifier can determine whether a given instruction is
being used appropriately, thereby avoiding a large
class of buggy translation rules.

Because these instructions provide unguarded
memory access, they should not be exposed directly
to application programmers. Therefore, Jaguar
bytecodes can only be used within translation rules
which define specializations to application code. Be-
cause these translation rules can emit instructions
which bypass Java’s protection model, they must
be trusted. However, we believe that placing this
trust in Jaguar translation rules is more desirable
than allowing arbitrary native code, for several rea-
sons. First, because Jaguar bytecode is machine-
independent and type-exact, it is more readily veri-
fied for correctness than code written in a low-level
language such as C. Second, translation rules can
be restricted in a number of ways; for example,
the front-end compiler could reject translation rules
which made use of certain instructions, or produce
sequences of Jaguar bytecode longer than a certain
length.

The Jaguar front-end compiler and translation
rules are themselves implemented in Java. When
the front-end compiler starts, it loads classes cor-
responding to the translation rules specified in a
user-supplied configuration file. It then reads a Java
class file and iterates over the instructions in each
method, calling a method in each translation rule
class. The rule inspects the current instruction and
can ignore it or replace it with zero or more Jaguar
instructions. In addition, translation rules can add
entries to the target class’ constant pool, create ad-
ditional fields or methods, and modify exception
handler table entries.

The Jaguar back-end compiler can be a straight-
forward modification to an existing Java compiler;
adding support for the additional Jaguar instruc-
tions is relatively easy. The following sections
present two implementations of this design: one
based on a static Java compiler and the other based
on a JIT compiler.

The process of compiling a Java method using
Jaguar translation rules and a back-end compiler is
illustrated in Figure 3. The method VipPostSend is
used to transmit data using the Berkeley VIA user-
level network interface [7]. It makes use of a special
object, the VIA Doorbell, which represents a regis-
ter on the network interface hardware. The method
calls on the doorbell object (set and isBusy are
specialized by the Jaguar front-end compiler to di-
rectly access the doorbell’s value using the Jaguar

javac

public int VipPostSend(VIA_Descr descr) {
  /* ... */

58 invokevirtual <set(VIA_Descr)>
isBusy x86 code

47 invokevirtual <isBusy()>

  while (TxDoorbell.isBusy()) ; // poll
  TxDoorbell.set(descr);
  return VIP_SUCCESS;
}

43 aload_0
44 getfield <TxDoorbell>

50 ifne 43
53 aload_0
54 getfield <TxDoorbell>
57 aload_1

61 iconst_0
62 return

getfield Doorbell.vaddr

ifne -> [true]
JAGUAR.ipeek

bipush 0
goto -> [done]
true: bipush 1
done: nop

isBusy:  %eax <- Doorbell.vaddr;
         movl $0, %edx;
         cmpl $0, (%eax);
         setne %dl;

Jaguar
Transformations

Apply

isBusy Jaguar Bytecode

Java Bytecode

Compile to
machine code

Java Sourcecode

Figure 3: Example of Jaguar bytecode specialization.

The top left shows the Java source code for the

VipPostMethod, which transmits data using the VIA

communication interface. The corresponding Java byte-

code is shown below. The two method calls (isBusy and

set) that are specialized by the Jaguar front-end com-

piler are highlighted. The Jaguar bytecode produced by

the translation rule for the isBusy call is shown at right,

with the Jaguar ipeek instruction highlighted. The Intel

x86 code corresponding to the Jaguar bytecode is shown

below. This method reads the value of the VIA door-

bell device register and returns a boolean value based

on whether the doorbell’s value is non-zero.

ipeek instruction. Note that the Jaguar bytecode
for these calls is inlined into the original applica-
tion code. The resulting Jaguar bytecode sequence
is rendered by the back-end compiler as four x86
machine code instructions.

3.1 Static Compiler Implementation

Our first implementation is based on a modified
version of GCJ [5], an static Java compiler based
on GCC. GCJ compiles Java source or class files to
standard object files and links them together with
a library implementing runtime support for threads
and garbage collection into an executable. GCJ pro-
duces very efficient code and runs across multiple
architectures and operating systems. The garbage
collector is based on Boehm’s incremental copying
collector [3]. Many standard Java libraries are sup-
ported, and the runtime includes a Java bytecode in-
terpreter for executing dynamically-loaded classes.
GCJ supports two native code interfaces: Sun Mi-
crosystems’ JNI [29], as well as the Cygnus Native
Interface (CNI) [26], an efficient Java binding to
C++.

The Jaguar front-end compiler takes a Java
classfile and produces a Jaguar classfile containing
Jaguar bytecode (which may be the same as the
Java bytecode, if no translation rules were applied).



The Jaguar classfile is distinguished by the filename
extension .jagc and a magic number in the header;
otherwise, it is identical in format to a Java class-
file. GCJ was modified to accept Jaguar instruc-
tions if a Jaguar classfile is being compiled. This
required adding only 98 lines of code to GCJ. 36
of these lines generate intermediate representation
structures for the additional Jaguar instructions,
and 33 lines add verification support. The modified
GCJ has been tested on Intel x86 systems running
Linux, but should work across all architectures and
operating systems supported by GCJ.

3.2 JIT Compiler Implementation

Our second implementation makes use of a mod-
ified just-in-time compiler which works in tandem
with a standard JVM. This is useful as it gives
Jaguar-based applications access to the wide range
of APIs supported by standard Java implementa-
tions, as well as dynamic class loading, albeit at the
expense of somewhat lower performance than GCJ.
We have added Jaguar support to OpenJIT [19], a
portable JIT compiler for x86 and SPARC platforms
which supports several operating systems. Open-
JIT is unique in that it is itself implemented in
Java, making it particularly easy to add support
for Jaguar. We have experimented with OpenJIT
on x86 Linux running Sun JDK 1.1.7v3.

Implementing Jaguar support in a JIT compiler
raises two new concerns. The first is that we wish
to avoid modifying the JVM itself, to minimize the
impact on existing Java implementations. Unfor-
tunately, modifications to the JVM are necessary
if Jaguar instructions are to pass by the bytecode
verifier (which is implemented within the JVM, not
the JIT). In our case, the JVM source code is un-
available, so modifying the JVM is not an option
anyway. The second concern is that the compila-
tion overhead of Jaguar bytecode support should be
minimal, since any overhead within the JIT com-
piler is reflected in the runtime of the application.

One approach to adding Jaguar support to a JIT
compiler is to do the bytecode specialization as late
as possible; that is, to move the Jaguar translation
rules into the JIT compiler itself (and hence, after
the original Java bytecode has passed verification
by the JVM). This is problematic as our current
translation mechanism is not particularly efficient,
and would have a noticeable performance impact
if implemented in the JIT. This problem could be
alleviated by using a more streamlined approach to
bytecode translation, such as precompiled pattern
matching.

To avoid these problems, the Jaguar front-end
compiler performs bytecode translation and stores
a code patch in the Java classfile describing the set
of changes to the Java bytecode produced by the
translation rules. The JIT compiler then applies
this patch before compiling the code for a method.
The patch is stored as an optional attribute in the
method descriptor of the classfile, and is passed to
the JIT compiler using a standard interface to the
JVM [20]; the JVM otherwise ignores this attribute.
Methods to which no translation rules have been ap-
plied have an empty code patch and incur no storage
or compile-time overhead.

We implemented two code patch techniques. The
first simply stores the expanded Jaguar bytecode for
a method; while this can significantly increase the
size of a patched classfile, it is trivial to apply the
“patch” at compile time. The second stores a set of
differences between the Java and Jaguar bytecode
based on a longest-common-subsequences analysis
of the two [21], which reduces patch size but requires
more overhead to apply.

Code patching raises the concern that the patch
itself may produce invalid Jaguar bytecode. This
concern can be alleviated by reverifying the Jaguar
bytecode after the patch has been applied. While
our current prototype does not perform reverifica-
tion, the OpenJIT compiler will catch many invalid
bytecode sequences during compilation. To reduce
the overhead of reverification, it may be possible to
perform a “fast verification” of only those bytecodes
affected by the patch; however, this becomes more
complicated if the patch changes the control flow of
the method in question.

Another issue is whether the code patch should
be trusted by the application (that is, that it cor-
rectly implements the specializations required by
the application). Both the verification and trust is-
sues can be addressed using techniques such as code
signing, which authenticate the source of the code
patch (say, as being produced by a trusted set of
translation rules). Our prototype currently assumes
that patched classfiles are trusted. Note, however,
that the mechanism used to deliver the patch to
the JIT (placing it within a code attribute of the
classfile) only works for classfiles loaded from the
local filesystem; the JVM will not pass along this
attribute for classfiles loaded over the network or
from another source. This provides one level of pro-
tection, requiring that code patches be generated by
a Jaguar front-end compiler running locally.

Adding Jaguar support to OpenJIT required
changes to 4 lines of code, and the addition of 164
new lines of code. Of these, 70 lines implement diff



patch support, 7 lines implement the flat patch, and
43 lines construct the intermediate representation
for the additional Jaguar bytecode instructions.

4 Analysis

In this section we analyze the two implementa-
tions of Jaguar described above. First, we mea-
sure the performance of several benchmark appli-
cations using both implementations. Our results
show that GCJ produces marginally faster code for
various microbenchmarks; larger applications will
probably see a more pronounced performance dif-
ference. Second, we measure the overhead of the
two code patch techniques in the Jaguar-enhanced
JIT compiler, demonstrating that the difference in
storage and compilation time overhead between the
two techniques is minimal.

4.1 Benchmark Performance

All of the measurements below were taken on
a 2-way 500 MHz Pentium III SMP system run-
ning Linux 2.2.13 and 512 MB of memory. Jaguar
support was added to GCJ v2.95.2 and OpenJIT
v1.1.10; the JVM used with OpenJIT is the Black-
down port of Sun JDK v1.1.7v3 [31] using green
threads.

Figure 4 shows the round-trip latency and band-
width of the Berkeley VIA user-level network in-
terface [7] as accessed from C code, as well as in
Java using both Jaguar/GCJ and Jaguar/OpenJIT.
These measurements were taken using a PCI
Myrinet interface card with a LANai 4.3 chipset and
1 megabyte of SRAM, with a single Myrinet switch
between the two benchmark systems.

VIA communication performance is a good mea-
surement of the performance of Jaguar, as it makes
heavy use of bytecode specialization for access to
low-level device registers as well as to network
buffers outside of the Java heap. The Jaguar in-
terface to VIA is described in detail in [37]. As the
results show, both Jaguar implementations match
the performance of the C-based benchmark ex-
actly. The round-trip latency for small messages
is 80 microseconds, and peak bandwidth is 480
megabits/sec for 100 KB packets.2

Figure 4 also shows estimated communication
bandwidth if the Java Native Interface (JNI) were

2The measurements here use a newer version of the VIA
software than that described in [37]; the new version has
slightly lower performance as additional features have been
added, including support for remote DMA operations.

used to provide VIA functionality in Java. In the
estimation, the overhead of using JNI (as measured
in [37]) was added to the measured per-message cost
and the resulting bandwidth recalculated. We as-
sume that each native method call costs 1.0 µsec
and that copying data from Java to native code costs
270 µsec per kilobyte. Four native method calls are
required per message transmitted. The estimated
bandwidth peaks at 28.55 megabits/sec, a factor of
17 less than JaguarVIA. Even if the performance of
the native interface were a factor of 10 faster, the
peak bandwidth would be only 187 megabits/sec,
far below that obtained with Jaguar.

Jaguar/ Jaguar/
Benchmark GCJ OpenJIT

Create PSO object 3.5 µsec 4.2 µsec
Recover PSO reference 3.3 µsec 3.1 µsec
Follow PSO reference 0.16 µsec 0.29 µsec

Assign PSO int field 0.014 µsec 0.035 µsec
Assign Java int field 0.008 µsec 0.018 µsec

Write int PSOArray element 0.022 µsec 0.057 µsec
Read int PSOArray element 0.014 µsec 0.049 µsec
Write int array element 0.017 µse 0.023 µsec
Read int array element 0.008 µsec 0.035 µsec

Figure 5: Pre-Serialized Object microbenchmarks. The

time for several primitive operations on Pre-Serialized

Objects is shown for both Jaguar implementations.

Figure 5 shows the performance of a benchmark
testing Pre-Serialized Object (PSO) operations un-
der both implementations of Jaguar. Pre-Serialized
Objects, described in detail in [37], are a mechanism
used to reduce the cost of Java object serialization,
which is commonly used to transmit Java objects
over a network, or to store object data on disk. Se-
rialization has a strong impact on the performance
of Java Remote Method Invocation (RMI) imple-
mentations [22].

Pre-Serialized Objects make use of Jaguar byte-
code specializations to affect the layout of Java ob-
ject fields; the idea is to store objects in memory
in a form that is “pre-serialized”, ready for storage
or communication. PSOs are implemented through
bytecode specializations which recognize putfield
and getfield accesses to objects of some class, mar-
shaling object data into and out of its pre-serialized
form. A PSOArray is a PSO which provides meth-
ods (such as readByte and writeByte) allowing it
to be treated as an array.

The benchmark measured in Figure 5 first cre-
ates a linked list of PSO objects and assigns values
to the object fields. Next, the benchmark simulates
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Figure 4: JaguarVIA microbenchmark results. The graph on the left shows the round-trip latency of messages
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function of message size for C and Jaguar, as well as an estimation of the bandwidth obtained if JNI were used to

access VIA functions as native methods. Also shown is the bandwidth if JNI performance were improved tenfold.

recovery of the objects from the pre-serialized form
by mapping a new PSO object list onto the data.
Recovering references to PSO objects requires de-
marshalling a pointer and creating a new object to
map onto the pointer’s location.

As the results show, GCJ has a significant per-
formance advantage over OpenJIT for these prim-
itive operations. In particular, GCJ has highly-
optimized routines for accessing object fields and
arrays; OpenJIT must deal with the Java object
representation within the JVM, and does not op-
timize code as heavily as the static compiler. Ac-
cessing PSOs is slower than accessing standard Java
objects in both cases, because these primitives are
constructed using multiple Java object field accesses
(as well as Jaguar peek and poke instructions).

4.2 Code Patch Overhead

To assess the overhead of Jaguar code patches,
we measured the size difference between original
Java classfiles and those patched using both the
two patch mechanisms. We also measured the
size of Jaguar classfiles generated for use with
the static Jaguar compiler (which contain only ex-
panded Jaguar bytecode, and no patch). The results
are shown in Figure 6. 27 classes in the Jaguar code
tree were processed by the Jaguar front-end com-
piler; only 7 of these classes had Jaguar translation
rules applied to them. As the figure shows, sev-
eral classes decreased in size when processed by the
front-end compiler; others increased in size even if
no translation rules were applied. This is because
of the way in which the Jaguar front-end compiler
parses and writes out classfile data. Ideally, a class
file with no translation rules applied to it would be

exactly the same size after processing.
The average classfile size increase was 698 bytes

using the diff patch method, and 738 bytes using
the flat method. The average increase for Jaguar
classfiles was 494 bytes. Note that using the diff ap-
proach does not have significant savings over simply
storing the fully-expanded Jaguar bytecodes; this is
because the number of instructions added by a patch
tends to be relatively large compared to the num-
ber of instructions in the original method. (Most
Jaguar translation rules take a single Java bytecode
instruction and expand it out to 5-20 new instruc-
tions.)

The time to apply Jaguar code patches and com-
pile methods using both patch techniques is shown
in Figure 7. These results show that applying a diff
patch takes about twice as long as applying a ‘flat
patch. However, the number of methods patched is
very small, less than 2% in most cases. Although
the time to apply a patch is about 10% of the av-
erage method compilation time, because the num-
ber of patched methods is small the total patch
time for an application is negligible. Although these
are small benchmark applications, we expect that
the use of Jaguar specializations (and hence, code
patches) will be restricted to a small set of low-level
libraries in a given application. In the case of the
VIA benchmarks, for example, only the core VIA
library makes use of code patches.

5 Issues and Future Work

Our approach to bytecode specialization raises a
number of issues for future investigation. The first
is whether the class of operations required for im-
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plementing efficient communication and I/O in Java
can be captured by just two additional bytecode in-
structions (peek and poke). Direct memory access is
a requirement for memory-mapped I/O interfaces,
and for manipulation of other memory regions (such
as I/O buffers) outside of the Java heap. However,
other communication layers, such as MPI [12] and
Active Messages [10], operate primarily through a
function-call interface. In addition, most operating
system features can only be accessed through the
use of system calls.

This suggests that the Jaguar instruction set
should provide a binding to arbitrary library and
system calls; however, this is already provided (indi-
rectly) through the use of Java native methods. The
main performance limitation of the Java Native In-
terface is in the way that native code accesses Java
data, and vice versa. Jaguar External Objects (de-
scribed in [37]) can be used to avoid this bottleneck,
as Jaguar specializations allow Java and native code
to directly share data external to the Java heap.
Sharing data on the Java heap is more difficult, as
the garbage collector must be informed when ob-
jects are being accessed outside of Java code. The
remaining concern with native methods is portabil-
ity and safety. One solution to these problems would
be to introduce a restricted form of native methods
which map only onto standardized APIs, such as
POSIX calls, and are responsible only for marshal-

ing data between Java and the library or system call
in question.

Another set of optimizations that Jaguar could
enable is fast floating-point operations and complex
arithmetic using standard Java operators. These
optimizations have been investigated using other
techniques, including class-specific compiler opti-
mizations [39] and dialects of the Java language [6].
While augmenting the Jaguar instruction set with
support for these optimizations fits nicely into the
goal of hardware specialization of Java applications,
it is not clear whether these instructions would
be portable across many architectures. Our desire
has been to strike a balance between performance,
portability, and generality.

The real opportunity presented by Jaguar is to
build novel systems in Java. Apart from the bene-
fits of increased portability, modularity, and robust-
ness, there is the potential to leverage Java’s protec-
tion model to achieve higher performance than can
be afforded by languages such as C. This is possi-
ble because code that was once protected from the
application by placing it in the kernel can now be
moved into a Java library, and co-optimized with
application code at compile time. We have investi-
gated the benefit of moving the protection code of
the Berkeley VIA implementation from the slow net-
work interface co-processor (which runs at 37 MHz)
into a Java library on the Pentium-based host, re-



Methods Average Average Average
Benchmark Patched Total patch size patch time compile time

JaguarVIA Pingpong 6 215
Diff patch 470 bytes 1.5 ms 11.92 ms
Flat patch 438 bytes 1.16 ms 11.92 ms

JaguarVIA Bandwidth 4 214
Diff patch 460 bytes 3.0 ms 11.93 ms
Flat patch 505 bytes 1.5 ms 11.93 ms

PSO Benchmark 3 221
Diff patch 341 bytes 2.66 ms 11.34 ms
Flat patch 343 bytes 1.33 ms 11.34 ms

PSO Test 3 194
Diff patch 442 bytes 2.66 ms 12.25 ms
Flat patch 510 bytes 1.33 ms 12.25 ms

Figure 7: Patch application and compile time for various microbenchmarks. Also shown are the number of methods

compiled in the application, and the number of methods which were patched. Note that the number of patches

applied is very low compared to the total number of methods used in the application.

sulting in a 15-20% increase in peak bandwidth and
a 25% reduction in round-trip latency. Using Java’s
protection model in place of the traditional system-
call boundary could improve other aspects of appli-
cation performance, including support for high I/O
concurrency and throughput [38, 15].

6 Conclusion

Java server applications must necessarily make
use of functionality not directly provided by the
JVM. These applications require both access to low-
level system resources, such as fast communication
and I/O interfaces, as well as management of mem-
ory external to the Java heap. While native meth-
ods provide a general-purpose way to invoke code
written in a lower-level language from Java, they
are generally non-portable, do not perform well, and
raise important safety concerns.

Jaguar takes an alternate approach, that of spe-
cializing Java bytecode at compile time to make
use of low-level operations expressed as type-exact,
portable Jaguar bytecode. Jaguar bytecode is a su-
perset of Java bytecode with just two additional in-
structions enabling direct memory access for spe-
cializations. Adding Jaguar support to an exist-
ing JVM is straightforward, and does not require
the addition of significant new functionality. Be-
cause Jaguar bytecode is inlined into the applica-
tion, the compiler can also perform aggressive op-
timizations against the combined application and
low-level code.

We have presented two implementations of the
Jaguar design, one based on a static Java com-

piler, and the other based on a JIT compiler. The
static compiler makes use of a Jaguar classfile con-
taining specialized bytecodes; the JIT solution uses
a code patch embedded in a standard Java class-
file. We have demonstrated both implementations
to perform well against a set of communication and
I/O benchmarks, and that the overhead of the code
patch technique is minimal. Our design represents
an efficient, safe means of extending the Java envi-
ronment to support large-scale server applications
that can be readily employed in existing Java im-
plementations.
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