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Abstract
An emerging class of sensor networks focuses on reliable collec-
tion of high-resolution signals from across the network. In these
applications, the system is capable of acquiring more data than can
be delivered to the base station, due to severe limits on radio band-
width and energy. Moreover, these systems are unable to take ad-
vantage of conventional approaches to in-network data aggregation,
given the high data rates and need for raw signals. These systems
face an important challenge: how to maximize the overall value of
the collected data, subject to resource constraints.

In this paper, we describe Lance, a general approach to band-
width and energy management for reliable data collection in wire-
less sensor networks. Lance couples the use of optimized, data-
driven reliable data collection with a model of energy cost for ex-
tracting data from the network. Lance’s design decouples resource
allocation mechanisms from application-specific policies, enabling
flexible customization of the system’s optimization metrics.

We describe the Lance architecture in detail, demonstrating its
use through a range of target applications and resource manage-
ment policies. We present an extensive study driven by both real
and synthetic data distributions, through simulations and runs on
a large sensor testbed. We show that Lance maximizes the value
of the collected data under a range of resource constraints, achiev-
ing near-optimal allocation of radio bandwidth and energy. Finally,
we present results from a real sensor network deployment at Tun-
gurahua volcano, Ecuador, in which Lance was used to drive data
collection for an eight-node network collecting seismic and acous-
tic signals from the active volcano.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems
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Design
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1. INTRODUCTION
Many sensor network applications involve the acquisition of high-

resolution signals using low-power wireless sensor nodes. Exam-
ples include monitoring acoustic, seismic, and vibration waveforms
in bridges [13], industrial equipment [14], volcanoes [26], and an-
imal habitats [3, 16]. These systems all attempt to acquire high
data-rate (100 Hz or higher), high-fidelity data across the network,
subject to severe constraints on radio bandwidth and energy usage.

Given these constraints, it is typically not possible to acquire
continuous waveforms from all nodes. As a result, applications
strive to acquire the most “interesting” signals, such as a marmot
call or earthquake, and avoid wasting resources on “uninteresting”
signals. Currently, these resource-management decisions are made
on an ad hoc basis for each application, often resulting in subopti-
mal solutions that can consume excessive bandwidth or lose data.
We argue that all of these applications would benefit from a gen-
eral approach to managing resources that optimizes the application-
specific value of the data acquired by the network.

Optimizing reliable data acquisition requires a coordinated ap-
proach to managing both limited energy capacity and severely con-
strained radio bandwidth. Depending on the sampling rate and
resolution, downloading signals may take longer than real time;
while low-power sensor node radios obtain single-hop throughput
of about 100 Kbps, the the best reliable protocols achieve less than
8 Kbps for a single transfer over multiple hops [12]. Likewise, to
achieve long lifetimes in the field, the energy cost of download-
ing a signal from the network must be carefully considered. The
fundamental challenge is how to best direct these limited network
resources to acquire the most valuable data to the application.

This paper presents Lance, a general approach to bandwidth and
energy management for reliable signal collection in wireless sensor
networks. In Lance, each node acquires data at potentially high
rates. For each application data unit (ADU), each node generates
a concise ADU summary, which is periodically sent to the base
station and used to compute a ADU value. Lance computes an
ADU download schedule based on these values, and uses a reliable
transfer protocol to download ADUs according to this schedule.

Energy usage and battery lifetime are major concerns for long-
term sensor network deployments. Lance incorporates a cost esti-
mator that predicts the energy cost for reliably downloading each
ADU from the network. We describe a novel energy cost estimation
algorithm that uses information on the network topology to deter-
mine the energy cost at the sensor node hosting the ADU as well
as intermediate nodes impacted by the multihop transfer protocol.
Information from the cost estimator is used to adjust the download
schedule for ADUs, allowing Lance to target a battery lifetime for
the network by load-balancing download operations in a manner
that adheres to an energy schedule.



Lance incorporates a general framework for managing bandwidth
and energy that decouples the mechanism for prioritizing resource
allocation from the application-specific policies used to assign ADU
values. This is accomplished through user-supplied policy mod-
ules that permit a range of sophisticated prioritization policies to
be tailored for specific applications. Policy modules allow Lance
to target a broad range of optimization metrics, including node-
local and network-wide value maximization, lifetime targeting, and
acquiring temporally- or spatially-correlated data from across the
network. Policy modules allow the network’s behavior to be sig-
nificantly altered at the base station, without reprogramming the
sensor nodes themselves.

The contributions of this paper are as follows. First, we present
the Lance architecture in detail, which is the first system to pro-
vide a value-driven bandwidth and energy management framework
for high-data-rate sensor networks. Second, we describe Lance’s
policy modules, which offer a clean separation of policy and mech-
anism that allows the system to be tailored to a broad range of ap-
plications. We focus on one application in detail: using Lance to
maximize data quality for a network of seismic and acoustic sen-
sors deployed at an active volcano. Third, we show through de-
tailed simulation measurements that Lance achieves near optimal
efficiency (greater than 96% in most cases) under a range of data
distributions and resource limitations. Fourth, we present results
from an eight-node field deployment of Lance at Tungurahua Vol-
cano, Ecuador, demonstrating the system’s performance in a real
field setting and the flexibility of policy modules for altering the
network’s operation following deployment.

The rest of this paper is organized as follows. Section 2 presents
motivation and related work. We describe the architecture of Lance
in detail in Section 3 and discuss the use of application-specific pol-
icy modules in Section 4. Section 5 presents a case study of several
applications that can make use of the Lance architecture. We briefly
describe our prototype in Section 6. Section 7 presents a detailed
evaluation while Section 8 presents results from our field deploy-
ment. Finally, Section 9 discusses future work and concludes.

2. BACKGROUND AND MOTIVATION
Wireless sensor networks are becoming more common for ap-

plications that focus on reliable collection of raw signals at rela-
tively high sampling rates, as opposed to in-network aggregation
of low-data-rate samples. These applications generally make use
of extensive offline analysis to study the collected data, and it is
often infeasible or impossible to perform this computation within
the network itself. Even in cases where it is possible to shift com-
putation to the network, a system designer may wish to extract raw
data occasionally for calibration or testing. Examples of such ap-
plications include structural health monitoring [5, 13, 17], acoustic
sensing [6, 7, 3, 16], distributed camera networks [23], and geo-
physical monitoring [26].

These systems typically record data to flash at each sensor node
and make use of a reliable bulk-transfer protocol to collect data at a
base station. Given that the network is capable of sampling data at
a higher rate than it can be downloaded, it is not possible to collect
the complete signal from all nodes. The system is therefore forced
to make a decision about what data to collect and what to throw
away. In most cases this decision is application-specific: for exam-
ple, a volcanologist may be chiefly interested in a specific type of
seismic tremor, and a biologist may be looking for acoustic signa-
tures of a specific species of marmot [3]. The implication is that
the system must be able to determine the intrinsic value of a given
signal to determine whether resources should be devoted to storing
and downloading that signal.

Previous approaches have involved simple mechanisms tailored
for specific applications. For example, in the NetSHM [5, 21] struc-
tural monitoring system, data collection is triggered manually fol-
lowing an excitation of the structure. Sentri [13] has been used for
vibration monitoring at the Golden Gate Bridge; it is unclear from
the paper how sampling and communication are triggered, but re-
ported experimental results suggest manual operation. The Reven-
tador volcano monitoring system [26] used a simple triggering al-
gorithm to detect seismic events and initiate reliable transfer to the
base station. The Intel Predictive Maintenance system [14] per-
forms high-data-rate sampling staggered over infrequent, periodic
collection periods to extend system lifetime. All of these systems
involve a tight binding of the mechanisms used to manage storage
and bandwidth with their respective application-specific policies.

The typical approach to download management is a FIFO model
where downloads occur in a round-robin fashion across the net-
work once a trigger occurs. In general, new data may be sampled
and stored to flash while a download is taking place. Therefore,
the trigger frequency, download cycle duration and the number of
nodes in the network all effect the amount of data captured by such
an approach. For example, the Flush [12] protocol achieves only
8 Kbps for a reliable transfer over multiple hops; the Fetch [26]
and Straw [13] protocols fare somewhat worse. The RCRT pro-
tocol [22] is designed for a case where all nodes are transmitting
simultaneously to the sink, although this approach severely limits
the obtained per-node throughput. As a result, when incoming data
rates exceed download capacity, FIFO download management can
produce excessive delays between data acquisition and retrieval.

Lance assumes that sensor nodes contain adequate flash storage
to buffer signals prior to download. While the popular TMote Sky
platform supports a relatively small 1 MB flash, more recent sensor
designs [11] have several GB of flash, and we expect this trend to
continue. Rather than focusing on per-node storage, our primary
concern is with limitations on bandwidth and energy.

Our goal is to develop a general-purpose approach to bandwidth
and energy management that complements a reliable data-collection
protocol. Such a system should have several key properties. First, it
should be customizable, allowing different applications to specify
their own policies for storage management and bandwidth priori-
tization. Second, the system should target a range of optimization
goals. Examples include maximizing overall data priority, bound-
ing energy consumption, maximizing temporal or spatial coverage
of the collected data, or achieving fairness across sensor nodes.
Third, the system should be decoupled from a specific routing pro-
tocol, reliable collection protocol, or sensor node platform, making
it possible to leverage the system in different settings.

Related work: Several systems are related to Lance but differ
substantially in their goals and assumptions. EnviroMic [16] is a
system designed to support distributed acoustic recording by lever-
aging the collective storage resources of multiple sensor nodes. En-
viroMic focuses on storage management and load balancing, and
assumes that data will be manually retrieved from sensor nodes fol-
lowing the deployment. Unlike Lance, EnviroMic is not intended
for applications with real-time data needs.

ICEDB [28] supplies a delay-tolerant and priority-driven query
processor for the CarTel [1] system. While ICEDB considers band-
width limitations, it does not consider energy as a constraint. ICEDB
provides SQL extensions allowing queries to assign both inter- and
intra-stream priorities, which are used by the query processor to
manage bandwidth and storage resources. ICEDB also uses a sim-
ilar node-level summarization technique to that used by Lance.

VanGo [6] provides an architecture for collecting and processing
high-resolution sensor data on resource-constrained nodes. VanGo
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Figure 1: The Lance system architecture. The summarization portions
are provided by the application; all other components are generic.

focuses on a programming model based on a linear filter chain and
implementing efficient signal-processing operations with limited
computational power. WaveScope [4] and Flask [18] are languages
for stream processing applications. These systems are largely com-
plementary to Lance, and could be used to process signal data prior
to collection, although our focus is on collecting raw sensor data
from large networks. These systems do not attempt to optimize
data collection under varying energy and bandwidth constraints.

3. LANCE SYSTEM ARCHITECTURE
This section describes the Lance architecture, introducing a for-

mal problem definition, design principles, and major system com-
ponents. Section 6 covers implementation details omitted here.

3.1 Problem definition
In Lance, the network consists of a set of sensor nodes that con-

tinuously sample and store sensor data into application data units
(ADUs), which are the unit of data storage and retrieval. Each
unique ADU ai consists of a tuple {i, ni, ti, di, vi, c̄i}, where i
is a unique ADU identifier, ni is the node storing the ADU, ti is a
timestamp, and di is the raw sensor data. We assume that ADUs
are of uniform size and that nodes have sufficient flash storage to
buffer collected signals, so an ADU is only evicted from a node’s
flash once it has been downloaded. We define the universe U as the
set of all ADUs sampled by the network over time.

Every ADU is assigned an application-specific value vi that rep-
resents the application’s intrinsic “utility” for the data contained
within the ADU. We make no assumptions about how ADU values
are assigned; the value could be a function of the data itself, the
time the data was acquired, which node sampled the data, data be-
ing sampled by other nodes, and so forth. Lance provides a flexible
infrastructure for applications to define their own value functions
through policy modules.

Each ADU has an associated cost c̄i that represents the energy
requirement to download the ADU from the network. c̄i is a vector
{c1

i , c
2
i , . . . , c

n
i } where cj

i represents the estimated energy expen-
diture of node j when ADU i is retrieved. The key idea is that we
explicitly model both the energy cost for downloading the ADU
from its “host” node ni and the energy cost for each node along the
routing path from ni to the base station which must forward pack-
ets during the transfer. In addition, we also model the energy cost
to nodes that overhear transmissions by nodes participating in the
transfer. This energy cost on intermediate nodes is non-negligible,

since reliable transfer protocols involve a potentially large num-
ber of retransmission. However, the overhearing cost is typically
small, since modern low-power MAC protocols quickly return to
sleep when overhearing transmissions to another node. The cost
vector c̄i therefore depends on the network topology.

We assume that each node has a battery with a fixed capacity
of C joules, and no energy harvesting is performed in the field.
Without loss of generality, let us assume that C is identical for all
nodes in the network and is known a priori. We define the lifetime
target L as the desired lifetime of each node in the network. To
meet the lifetime target, nodes should strive to consume no more
than C/L joules per unit time on average; we call this the discharge
rate of the node.

The high-level goal of Lance is to download the set of ADUs that
maximizes the total value, subject to the lifetime target. Abstractly,
we define an epoch duration ∆. Over each epoch, the energy con-
sumption of each node must be less than the discharge rate, that is,P

i

P
j cj

i ≤ ∆ × C/L. Determining the optimal set of ADUs to
download can be determined by solving a multidimensional knap-
sack problem in which each ADU represents an item to place in the
knapsack with value vi and cost c̄i. The knapsack has N dimen-
sions (where N is the number of nodes in the network), each of
size ∆ × C/L representing the energy availability over an epoch.
However, calculating the optimal solution requires a priori knowl-
edge of all ADUs generated by the network over time. Clearly, any
real system must make use of an online, heuristic algorithm to ap-
proximate the optimal solution. We discuss and evaluate several
different approaches, presenting results with respect to the optimal
offline solution.

3.2 Design principles
Before describing Lance in detail, we first outline several princi-

ples that guide its design.
Decouple mechanism from policy. We wish to make it easy to

adapt Lance to different application domains by providing a sim-
ple set of underlying mechanisms for weighing cost and data value
that can be tailored for different end-user goals. These core mech-
anisms should not be tied to any interpretation of the data stored
in an ADU. This approach leads to a clean separation of concerns
between Lance’s resource management layer and the higher-level
policies informing its operation.

Simplicity through centralized control. In a field deployment set-
ting, it is highly desirable for the sensor network to be as simple as
possible, to prevent failures or unexpected behavior due to bugs.
Past deployment experiences have taught us, and others, that intro-
ducing complex dynamics within the network can lead to a system
that is difficult to understand, debug, or fix in the field [26, 25].
To maximize the chances of a successful deployment, Lance places
most of the control logic at the base station, treating sensor nodes
as slave devices. This principle makes it easy to change the be-
havior of the network at the base station and allows nodes to fail
independently without affecting the rest of the system. Conven-
tional replication and failover techniques can be used to bolster the
reliability of the base station itself.

Low cost for maintenance traffic. Given limited node energy, we
wish to reserve as much capacity as possible to support data col-
lection. This implies that the system should strive to limit control
messages between the base station and the sensor nodes, as well as
internal traffic within the network, as transmitting packets unnec-
essarily consumes valuable energy. This is somewhat at odds with
the need for central control, as the latter could require extensive co-
ordination between sensor nodes and the base station; we wish to
strike a good balance between these two conflicting goals.



3.3 System overview
Figure 1 provides an overview of the Lance architecture. Sen-

sor nodes sample sensor data, storing the data to local flash stor-
age. Each application data unit (ADU) consists of some amount of
raw sensor data, a unique ADU identifier, and a timestamp indicat-
ing the time that the first sample in the ADU was sampled. ADU
timestamps can either be based on local clocks at each node, or tied
to a global timebase using a time synchronization protocol such
as FTSP [19]. The size of an ADU should be chosen to balance
the granularity of data storage and download with the overhead for
maintaining the per-ADU metadata. In the applications we have
studied, an ADU stores several seconds or minutes of sensor data,
not an individual sample. ADUs are stored locally in flash, which
is treated as a circular buffer.

Ideally, nodes would be able to compute the value vi of an ADU
locally, as the data is sampled. However, since the value might de-
pend on factors other than the ADU’s data, such as data computed
at other nodes. Lance assigns values vi at the base station, based
on global knowledge of the state of the network. However, this re-
quires nodes to communicate some low-bandwidth information on
the ADU contents to the base station. For this purpose, each node
applies an application-supplied summarization function, computing
a concise summary si of the contents of the ADU as it is sampled.
Nodes periodically send ADU summary messages to the base sta-
tion, providing information on the ADUs they have sampled, their
summaries, timestamps, and other metadata. As a special case, if a
node is able to assign the ADU’s initial value directly, this is used
as the summary.

The Lance controller receives ADU summaries from the net-
work. The controller also estimates the download cost c̄i for each
ADU, based on information on network topology as well as a model
of energy consumption for download operations. The ADU sum-
maries and cost are passed through a series of policy modules,
which provide application-specific logic to assign the value vi to
each ADU. The resulting values are passed to the Lance download
manager which is responsible for performing downloads, using a
reliable data-collection protocol, such as Flush [12].

3.4 Summarization functions
Lance computes ADU values using two application-provided com-

ponents. The first is the summarization function, described above.
The second component is a chain of policy modules executed at
the base station which, by modifying the value for each ADU, can
implement a range of application-specific policies. Since the base
station receives ADU summaries from every node, the policy mod-
ules can use global information not available to individual nodes to
make informed bandwidth and energy allocation decisions.

Lance places two constraints on the on the summarization func-
tion. First, we require that the summary be small (typically a few
bytes) to limit the overhead for storing and transmitting these val-
ues. Second, the function must be able to run efficiently on the sen-
sor node as ADUs are being sampled. Otherwise, the exact form of
the function is entirely application-specific.

As a concrete example, consider a network for downloading seis-
mic events from an earthquake zone. One commonly-used measure
of overall seismicity during a time period is the Real-Time Seismic
Amplitude Measurement (RSAM) [20], which computes the aver-
age amplitude of a seismic signal over some time window (typically
1 to 10 minutes). This function is simple to compute and reduces
a complex seismic waveform to a single scalar value, with higher
values indicating greater seismic activity.

Another form of summarization is an event detector, which would
produce a nonzero value whenever an event of interest is contained

within the ADU; the summary might also represent the strength or
confidence of the event detection. For example, an acoustic animal
tracking system [3] or countersniper localization system [24] might
use a simple trigger-based summarization function, indicating the
detection of a marmot call or gunshot in the ADU.

3.5 Cost estimation
Lance estimates the download energy cost vector c̄i for each

ADU sampled by the network. We assume that nodes are orga-
nized into a spanning tree topology rooted at the base station. The
cost is a function of many factors, including the reliable transport
protocol, each node’s position in the routing tree, radio link quality
characteristics, and the MAC protocol.

Given the complex dynamics that can arise during a sensor net-
work’s operation, we opt to use a simple conservative estimate of
the energy cost to download an ADU from a node. Our approach
is based on an empirical model that captures three primitive energy
costs involved in downloading an ADU. The first, Ed, represents
the energy used to download an ADU from a given node which
includes the energy cost for reading data from flash and sending
multiple radio packets (including any retransmissions) to the next
hop in the routing tree. The second, Er , represents the energy cost
at intermediate nodes to forward messages during the ADU trans-
fer. The third, Eo, represents the energy cost to nodes that overhear
transmissions during a transfer. For simplicity, we assume ADUs
of fixed size and compute Ed, Er , and Eo based on the time nec-
essary to download an ADU from the target node.

Using this simple model, we set the elements of the cost vector
c̄i as follows. cn

i = Ed for the node n hosting the ADU, and
cm

i = Er for nodes m along the routing path from n to the base
station. We set co

i = Eo for nodes that are assumed to be within one
radio hop of any of the nodes involved in the transfer. Estimating c̄i

therefore requires knowledge of the current routing topology. This
information is readily available: the periodic summary messages,
sent to the base station by every node, include the node’s radio
neighbors and parent in the routing tree. Cost vectors can be easily
recomputed whenever the routing topology changes.

To ensure that all nodes meet the lifetime target L, Lance models
the energy availability at each node using a token bucket with depth
D and fill rate C/L, corresponding to the mean discharge rate. D
is determined by the target lifetime L, the battery capacity B and
the background drain rate R. In general, D = B − L ∗ R, so D
represents the energy remaining after the node reserves enough to
ensure it can meet its target lifetime at the background level.

3.6 Lance optimizer
The Lance optimizer is responsible for scheduling ADUs for

download, based on knowledge of the set of ADUs currently stored
by the network, their associated values, and costs. ADU down-
load itself is accomplished using a reliable transfer protocol such as
Fetch [26] or Flush [12]. In our design, Lance attempts to download
a single ADU at a time, in order to prevent network congestion, al-
though it may be possible to download multiple ADUs simultane-
ously, depending on the network topology. A download completes
either when the entire ADU has been received or a timeout occurs.

Lance’s optimization process attempts to maximize the value of
the ADUs retrieved while adhering to the lifetime target L. In
essence, we seek a greedy heuristic approximation of the multidi-
mensional knapsack solution that would be used by an oracle with
complete knowledge of the ADUs sampled by the network over all
time. The optimizer first excludes ADUs that would involve nodes
without enough energy to perform a download. That is, if the to-
ken bucket for a given node m has E(m) joules, ADUs for which



E(m) < cm
i are excluded from consideration. Note that as the

bucket fills, the ADU may become available for download at a later
time. We call these ADUs infeasible, and the remaining feasible.

To determine the next ADU to download, the optimizer consid-
ers the value vi of each ADU and the its associated cost c̄i. We
consider three scoring functions that assign a download score to
each feasible ADU; the ADU with the highest download score is
downloaded next. In the case of ties, an arbitrary ADU is chosen.

The first scoring function, value-only, simply downloads the fea-
sible ADU with the highest value vi. Note that value-only will meet
the network’s lifetime target (since only feasible ADUs are consid-
ered) but does not rank ADUs according to cost. The second scor-
ing function, cost-total, assigns the score v̂i by scaling the value of
the ADU by its total cost: v̂i = vi/

P
j cj

i . The feasible ADU with
the highest score is then downloaded from the network. This ap-
proach penalizes ADUs stored deep in the routing tree, which have
a higher overall cost than those located near the base station.

The third scoring function, cost-bottleneck, scales the ADU value
vi by the cost to the node that is an energy bottleneck for download-
ing this ADU. That is, let b represent the node with the minimum
value of E(b) such that cb

i > 0. cost-bottleneck sets the score
v̂i = vi/cb

i . The intuition behind this scoring function is that the
most energy-constrained node should be considered when scoring
ADUs for download. We evaluate all three scoring functions in this
paper and show that they yield very different results in terms of
spatial distribution and energy efficiency.

4. POLICY MODULES
Policy modules provide an interface through which applications

can tune the operation of the Lance optimizer. Since policy mod-
ules are loaded into the system at the base station, they can be mod-
ified at any time without necessitating reprogramming of the sensor
nodes themselves. In this section we provide a general discussion
of policy modules and provide a series of examples of various poli-
cies that can be implemented through this feature.

4.1 Definitions
A policy module is an application-supplied function that takes

as input an ADU summary tuple ai = {i, ni, ti, di, c̄i, si, vi} and
produces a new tuple a′i with a possibly modified value v′i. Policy
modules run at the base station, can maintain internal state, and
operate with global knowledge of the ADUs stored in the network.

A series of policy modules {m1, m2, ...mn} are composed into
a linear chain, which is passed the ADU information extracted from
the ADU summary messages received at the base station. The first
policy module in the chain is responsible for assigning the initial
value vi to the ADU based on the summary information si cal-
culated by the sensor node. The final ADU value produced by
the chain is used as input to Lance’s optimizer for the purpose of
scheduling ADUs for download.

Lance requires that policy modules be efficient in that they can
process the stream of ADU summaries received from the network
in real time. In practice this is not difficult to accomplish, as the rate
of ADU summary reception is modest, and the base station (typi-
cally a PC or laptop) is assumed to have adequate resources. For
example, a 100-node network with an ADU size of 60 sec would
receive an ADU summary every 600 msec. Typical policy modules
take a small fraction of this time to run.

One of the main benefits of policy modules is that they per-
mit significant changes to the network’s behavior without requir-
ing changes to the node-level summarization function. Changing
the latter would typically involve reprogramming sensor nodes. In
the field, it is often undesirable to reprogram the network except

Policy module Description
filter Set ADUs below threshold to zero value
boost Set ADUs above threshold to max value
timespread Dilate ADU values across time
spacespread Dilate ADU values across space
adjust Add or subtract offset to ADU value
smooth Apply low-pass filter to remove noise
debias Median filter DC debiasing
correlated Boost values for correlated events
costfilter Filter ADUs above cost threshold

Figure 2: Standard policy modules provided by Lance.

when absolutely necessary, and in many cases it is difficult to reach
sensor nodes physically once deployed. Although systems such as
Deluge [9] permit over-the-air reprogramming, any changes to the
sensor node software could result in unexpected failures that can be
very difficult to debug without manual intervention. On the other
hand, introducing new policy modules at the base station is rela-
tively straightforward, and can be quickly reversed without risking
sensor node failures.

4.2 Example policy modules
Policy modules can be used to encapsulate a wide range of data

collection goals, and make it easy to customize Lance’s behavior
for specific applications. We provide a standard toolkit of general-
purpose policy modules, summarized in Figure 2. Application de-
velopers are free to implement their own modules as well. By com-
posing modules in a linear chain, it is easy to implement various
behaviors without requiring a general-purpose “policy language.”

Value thresholding: filter is perhaps the simplest example
of a policy module that filters out ADUs with a value below a given
threshold T by setting their values to zero. Setting v′i = 0 prevents
an ADU from being considered for download by the optimizer.
This type of filtering can be used to force a drop of low-valued
data. Conversely, the boost policy module sets the value for an
ADU above a given threshold to the maximum value, ensuring it
will be downloaded as soon as it is feasible.

Value adjustment and noise removal: Policy modules can be
used to remove the effects of noise or correct for node-level value
bias, for example, based on poor sensor calibration or differences
in site response. Moreover, since each node computes the ADU
summary based only on local sensor data, it may be necessary to
normalize the ADU values in order to compare values across nodes.
adjust adds or subtracts a node-specific offset to each ADU

value to correct for differences in sensor calibration.smooth ap-
plies a simple low-pass filter on the raw ADU values to remove
spikes caused by spurious sensor noise. Likewise, debias is in-
tended to remove sensor-specific DC bias from the ADU values.
debias computes the median ADU value for a given node over a
time window. It then subtracts the median from each ADU value
before passing it along to the next module in the chain.

Likewise, when a sensor network contains multiple sensors with
varying sensitivity, it is natural to prioritize data from more sensi-
tive instruments. In cases where networks are deployed to monitor
fixed physical phenomena, it may be desirable to prioritize data
from nodes located close to the phenomena being observed. The
adjust module can be used to scale raw ADU values based on a
sensor’s location, SNR, or other attributes.

Value dilation: Another useful policy is to dilate a high (or low)
ADU value observed in one ADU across different ADUs sampled
at different times or different nodes. This can be used to achieve
greater spatial or temporal coverage of an interesting signal ob-
served at one or more nodes. The timespread detects ADUs
with a value above some threshold T and assigns the same value to



those ADUs sampled just before and just after.
Likewise, the spacespreadmodule groups ADUs from across

multiple nodes into time windows and assigns the maximum ADU
value to all ADUs in that window. Define a window W (t, δ) as the
set of ADUs such that t − δ ≤ ti ≤ t + δ where t represents the
center of the window and δ the window size. spacespread de-
termines the maximum ADU in the window v∗ = argi∈W max vi

and sets v′i = v∗ for each ADU in W .
Correlated event detection: The correlatedmodule is used

to select for ADUs that appear to represent a correlated event ob-
served across the entire sensor network. correlated counts the
number of ADUs within a time window W (t, δ) with a nonzero
ADU value. If at least k ADUs meet this criterion, we assume that
there is a correlated stimulus, and the values for all ADUs in the
set are passed through. Otherwise, we filter out the ADUs in the
window by setting v′i = 0 for each ADU in W .

As an example of composing policy modules to implement an
interesting behavior, consider the chain

filter(T ) → correlated(k) → spacespread

This policy filters incoming values, rejects time-correlated sets with
fewer than k ADUs above the threshold, and assigns the max value
across the set to all ADUs. This can be useful in systems that wish
to perform collection of time-correlated data, but avoid spurious
high-value data from just a few nodes. This policy is similar to the
volcanic earthquake detector reported in [26], expressed as a simple
policy module chain.

Cost-based filtering: Lance’s optimizer considers both the cost
of ADUs as well as their application-assigned values when making
download scheduling decisions. The cost vector c̄i is also available
to the policy module chain, allowing policy modules to perform
their own adjustments to the ADU value according to cost, per-
mitting applications to augment Lance’s own policies for energy
scheduling. For example, the costfilter policy module filters out
ADUs with a total energy cost

P
j cj

i greater than some threshold;
this ensures that the network avoids expending an arbitrary amount
of energy to download a given ADU (regardless of its data value).
Policy modules give applications a great deal of control over energy
usage to complement Lance’s own energy scheduling policy.

5. APPLICATION CASE STUDIES
In this section, we present several case studies of how Lance can

benefit different application domains. We describe our use of Lance
in a geophysical monitoring sensor network in detail, and discuss
its use for limb motion analysis, structural monitoring, and animal
habitat monitoring. All of these applications share the challenges
that Lance was designed to address: the need for reliable data col-
lection with limited bandwidth and storage.

5.1 Geophysical monitoring
Wireless sensor networks can greatly benefit geophysical moni-

toring applications, such as seismic and acoustic data collection at
fault zones [10] and volcanoes [26]. Low-power wireless sensors
are highly desirable in these settings, where sensors must be carried
to a deployment site by hand and often cannot be manually serviced
once deployed.

The goal is to deploy a wireless array of sensors for monitor-
ing both seismic and infrasonic (low-frequency acoustic) signals,
including earthquakes, tremor, and volcanic eruptions. Depending
on the level of seismic or infrasonic activity, the network might
record dozens of events an hour, with each event typically lasting
less than 60 sec (although long-period tremor events can last min-
utes or hours).

As an example, in our previous work on volcano monitoring at
Reventador [26], each sensor node continuously sampled two chan-
nels of seismic and acoustic data at 100 Hz per channel with a res-
olution of 24 bits/sample. Raw data was stored to the node’s flash
memory as a circular buffer. An event-detection algorithm running
on each node would send an event report to the base station when-
ever an interesting seismic signal was detected. If the base station
received enough event reports within a short time window, it would
initiate a round-robin download of the last 60 sec of data from each
node. Although this system was successfully deployed, it exhibited
several deficiencies which led to a significant loss of data [26].

The first problem is that the decision used to download a given
signal was based on a simplistic binary approach, based on the
event-detection algorithm running on each node. As a result, the
system could not prioritize certain events over others. The event-
detector logic used a simple threshold scheme, and as reported
in [26], the threshold was set too low, causing the network to trigger
on less than 5% of the actual seismic events.

The second problem was that following each trigger, the net-
work initiated a nonpreemptive download from every node in the
network in a round-robin fashion. This policy caused the system to
devote resources to downloading small precursor earthquakes that
immediately preceded larger eruptions [26]. As a result, many such
larger events were not captured.

Finally, our previous system made no attempt to manage en-
ergy. As a result, the expected lifetime of the network is only
about a week (using D-cell batteries), necessitating frequent bat-
tery changes over a long deployment. Clearly, this system could
benefit from a prioritized approach to download management that
also considers energy costs to increase lifetime.

5.1.1 Adaptation to Lance
To address these problems, we reimplemented our previous vol-

cano monitoring system using Lance. Many of the components of
the original system, such as multihop routing, time synchroniza-
tion, reliable download protocol, and flash storage interface, re-
mained unchanged. The node-level event detector was replaced by
an ADU summarization function, as described below. The base
station code for responding to correlated events was replaced with
Lance’s optimizer and policy modules. Our deployment of the
completed system at Tungurahua volcano in August 2007 is dis-
cussed in Section 8.

5.1.2 Summarization functions
The original system was intended to detect correlated seismic

events from across the network and download data from all nodes,
regardless of whether every node detected the event. This was
based on a simple event detector that computes two exponentially-
weighted moving averages (EWMA) of the seismic signal, with
different gain settings; one EWMA represents the short-term aver-
age and the other the long-term average. When the ratio between
these two averages exceeds a threshold, an event detection message
is sent to the base station. Subsequent triggers are suppressed for a
short duration afterwards.

This policy is straightforward to implement in Lance by using
the “ratio of two averages” as the node-level summarization func-
tion. Rather than performing thresholding at the node level, we re-
port the maximum ratio over the ADU as its value, allowing Lance
to prioritize different events. The base station’s policy modules
are configured as shown in Section 4.2, using a chain of filter,
correlated, and spacespread to implement the equivalent
of the event triggering policy used in the original system. Note
that the Lance version of the system differs from the original in



that download management is value-driven rather than FIFO. Also,
Lance can download ADUs from different events out of order, avoid-
ing the nonpreemptive download problems of the earlier system.

While our original system was designed to capture short earth-
quakes, were also interested in determining whether Lance could
be used to capture different types of volcanic activity. For this,
we make use of the Real-Time Seismic Amplitude Measurement
(RSAM) [20], which computes the average seismic amplitude over
a given time window. Intuitively, RSAM measures the total amount
of ground shaking caused by earthquakes and tremor, and is often
used by volcano observatories to characterize the overall level of
seismic activity.

Different summarization functions and policy modules can be
used to implement a wide range of geophysical monitoring sys-
tems with Lance. For example, a hazard monitoring system could
be configured to periodically report RSAM values for all sensor
nodes and download only the strongest events for further analysis.
By limiting downloads to those ADUs with RSAM above some
threshold, energy can be saved. In contrast, a scientific study that
wishes to perform earthquake localization [2] or tomographic in-
version [15] would prefer to download only small earthquakes with
clearly delineated onsets, which can be used to determine the veloc-
ities of seismic waves. Likewise, a researcher studying explosive
events would prefer to download only seismic events with a corre-
sponding infrasonic component, since non-explosive earthquakes
should not generate any infrasound.

5.2 Other application domains
We believe that Lance can be used to benefit many applications

that make use of high-resolution signals delivered over a bandwidth-
limited wireless network. These applications require high data rates,
precluding continuous data collection, and rely on classification
techniques to determine which signals to download. Two examples
are given below.

Structural monitoring: Structural monitoring systems collect
vibration waveforms from a building, bridge, or other structure in
order to study structural properties and seismic response. In previ-
ous systems [21, 13], data collection has been triggered manually
or on a simple periodic schedule. Instead, Lance can be used to pri-
oritize signals following an earthquake or forced excitation of the
structure, similar to the EWMA and RSAM functions described
earlier. To save energy, the system could choose a subset of nodes
from which to download data to achieve a good spatial distribution
across the structure. The size of the subset could be chosen depend-
ing on the strength of the excitation. In addition, policy modules
can be used to perform periodic downloading of ADUs from each
sensor for calibration, as well as to determine whether each sensor
is still functioning properly.

Animal habitat monitoring: Habitat monitoring applications
that deploy high-bandwidth sensors, such as microphones or cam-
eras, are good candidates for prioritized data extraction. An exam-
ple application may attempt to download interesting audio signals
facilitating offline species classification or localization [3]. The
summarization function could involve either a triggered event de-
tector, an audio waveform classifier, or motion detector from a se-
ries of camera images [23].

At the base station, policy modules can use offline knowledge
of node positions to modify the initial ADU value. One approach
might enhance spatial coverage by prioritizing data collection from
nodes nearby the source of the signal. Another could reject noise
by deprioritizing signals detected by only one node. For example,
if fewer than three nodes report an audio event, it is impossible to
perform acoustic localization and Lance need not waste bandwidth

on the signal. Policy modules can take other metrics into account
as well, such as the SNR of the recorded signal or the time of day
(e.g., reducing confidence in camera images taken at night).

6. PROTOTYPE IMPLEMENTATION
We have implemented Lance in TinyOS 2.x [8] for TMote Sky

and iMote2 sensor nodes. The TMote Sky features a 1 MB flash
memory (ST M25P80) divided into 16 sectors of 64 KB each. Our
current prototype matches the ADU size to the sector size to sim-
plify storage management, but this is not a fundamental limitation
in the design. Sensor nodes participate in a multihop spanning-
tree protocol rooted at the base station; we use the Collection Tree
Protocol provided with TinyOS 2.0 for this purpose. Nodes send
a periodic storage summary to the base station. To improve relia-
bility, we use a sliding window approach in which each summary
includes information on the last 5 ADUs recorded by the node.
The node prioritization function is implemented as an application-
supplied NesC component conforming to a simple API. Our proto-
type uses our own Fetch [26] reliable transfer protocol, although it
would be straightforward to replace this with another protocol such
as Flush [12].

The Lance download manager runs at the base station and re-
ceives data from the network via a “gateway node” connected to
the base station by a serial cable or radio modem. The download
manager is implemented in Perl and makes use of several external
utilities for reading and parsing storage summary packets and send-
ing download requests to the network. Policy modules are imple-
mented as separate UNIX processes (which can be in any language;
we typically use Perl) that read storage summaries on stdin and
produce modified storage summaries on stdout. A simple con-
figuration script is used to compose multiple policy modules into
a pipe. We find that using standard scripting languages and UNIX
utilities makes it very easy to implement a range of policy mod-
ules. A suite of Python utilities for logging, data visualization, and
managing the network through a GUI are also provided.

7. EVALUATION
This section presents a careful evaluation of Lance conducted

along several lines. Using a high-level system simulator and syn-
thetic data sets, we evaluate the three scoring functions described
in Section 3.6. We motivate our use of the cost-bottleneck scoring
function and demonstrate that it performs better than simpler alter-
natives. Next, we look at the impact of varying parameters such as
download bandwidth and network lifetime, as well as the impact of
errors in the cost vectors. We also present results from experiments
run on a 50-node sensor network testbed using realistic data sets.

7.1 Metrics and methodology
As stated in Section 3.1, the high-level goal of Lance is to down-

load a set of ADUs maximizing the total value subject to energy
and bandwidth constraints. The optimal solution is defined as the
solution to the multidimensional knapsack problem, which yields a
set of downloaded ADUs O = {a1, a2, ...an} that maximize data
value subject to bandwidth and energy constraints. The total data
value of the optimal solution v̂(O) =

P
ai∈O vi. Recall that com-

puting the optimal solution requires a priori knowledge of all of the
ADU values sampled by the network over time. We define optimal-
ity as the fraction of the data value downloaded by Lance compared
to the optimal solution. That is, given a set of downloaded ADUs
L with total data value v(L), we define optimality as v(L)/v̂(O).
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Figure 3: Per-node distribution of ADU value and energy usage for the linear simulation experiment. The top graph shows the amount of data value
downloaded from each node, while the bottom graph breaks down the amount of energy used by each node into the downloading, routing and overhearing
components. Node 1 is closest to the base station.
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Figure 4: Effect of cost vector error on optimality. The optimization
process is guided by the cost vectors, but predicting the energy cost of oper-
ations before they are performed can be difficult. Here we show the impact
of introducing a degree of error into the cost vectors used by the optimizer.
As can be seen, we can tolerate a relatively high degree of error, as long as
the shape of the cost vector does not change.

We begin by presenting results based on a realistic system sim-
ulator that allows us to quickly vary parameters such as ADU data
value distribution, network topologies, download speeds, energy
costs, and target lifetimes. We also present results from Lance
running on MoteLab [27], a sensor network testbed deployed over
3 floors of the Harvard EECS building. Our simulation experiments
use a 10-node linear topology as well as a 25-node realistic tree
topology shown in Figure 9(a). Both topologies use per-node ADU
download speeds based on empirical measurements taken using the
testbed. In our experiments, the ADU size is 36 KB and each node
samples one ADU every 60 seconds (or 600 bytes/s of data).

We draw ADU values from several distributions in an attempt to
understand Lance’s behavior as the properties of the sampled data
change. Three value distributions are used: uniform random, expo-
nentially distributed, and Zipf with exponent α = 1. We also make
use of an ADU value distribution based on a 6 hour seismic signal
collected at Reventador Volcano, Ecuador in 2005 [26].

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

20

40

60

80

100

T
im

e 
Sp

en
t 

D
ow

nl
oa

di
ng

(%
 o

f 
E

xp
er

im
en

t)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210
Lifetime Target

(days)

20

40

60

80

100

M
ax

im
um

 E
ne

rg
y 

U
se

d
on

 A
ny

 N
od

e 
(%

)

Maximum Energy Used on Any Node
Time Spend Downloading

Figure 5: Crossover between bandwidth and energy constraint domi-
nance as lifetime is varied. This graph shows the transition between band-
width and energy constrained regions for an optimal system. The right axis
shows the percent of energy consumed by the most highly-drained node, and
the left axis shows the amount of time spent downloading.

The energy costs for various operations are modeled as follows.
The background current drain of each node is set to 2 mA, based
on empirical measurements of a TMote Sky sensor node perform-
ing high-data-rate sampling and storing to flash. We also measured
the current consumption to download an ADU from a sensor node,
and derived the energy costs for downloading (Ed = 17.6 mA/s),
routing (Er = 16.9 mA/s), and overhearing (Eo = 2 mA/s). Our
experiments assume that each node can only overhear its parent
in the routing tree; developing more detailed overhearing models
is the subject of future work. Computing the components of the
cost vector for a particular ADU is done by multiplying the cur-
rent consumption by the ADU download time for each node either
downloading, routing, or overhearing the transmission.

7.2 Effectiveness of scoring functions
We begin by evaluating the three scoring functions described

Section 3.6. We want to see which is the most able to approximate
the optimal solution across a range of target lifetimes and ADU dis-
tributions. As discussed earlier we expected the value-only scoring



Scoring Functions
Value Cost Cost

Distribution Lifetime Only Total Bottleneck

Uniform
4 months 62.4% 90.5% 93.2%
11 months 43.4% 68.0% 96.9%
18 months 44.6% 49.0% 90.0%

Exponential
4 months 83.9% 85.1% 88.0%
11 months 70.4% 82.0% 93.0%
18 months 67.2% 72.8% 91.2%

Zipfian
4 months 84.7% 91.4% 87.1%
11 months 63.8% 91.1% 96.2%
18 months 53.1% 86.9% 93.8%

Figure 6: Optimality of different scoring functions. This table sum-
marizes simulation results evaluating the three different scoring functions.
Results are shown for several different lifetime targets and value distribu-
tions. cost-bottleneck out-performs the others in almost all cases.
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Figure 7: Scoring function performance on Zipfian distribution. The
cost-bottleneck scoring function outperforms the other two across a range
of lifetime targets.

function, without considering the energy or bandwidth overhead
of downloading each ADU, to consume more energy download-
ing high-valued ADUs when it could have increased the total data
value by downloading several slightly less-highly valued ADUs
with lower costs. The cost-total scoring function incorporates a
notion of cost, but will tend to favor nodes closer to the base sta-
tion at the expense of high-valued ADUs that are more routing hops
away. The cost-bottleneck scoring function should strike a balance
between the two, since it considers only the most significant com-
ponent of the cost vector when ranking ADUs.

Figure 3 shows simulation results using the 10-node linear topol-
ogy with exponentially-distributed ADU values, and a target life-
time of 3 months. Nodes are numbered in increasing distance from
the base station. The graph confirms the intuition behind the scor-
ing function behavior. value-only downloads roughly equal value
from each node, but fails to match the optimal performance. cost-
total downloads more data from nodes near the sink. cost-bottleneck
comes close to matching the optimal solution, retrieving over 99%
of the value retrieved by the optimal solution.

Table 6 summarizes simulation results from a variety of different
lifetimes and value distributions, run on the 25-node tree topology.
The table shows that the cost-bottleneck scoring function outper-
forms the other two in most cases, with optimality values between
87.1% and 96.9%. The one exception is the 4-month Zipfian data
set, where cost-total slightly outperforms cost-bottleneck. Figure 7
shows the effect of varying the network’s target lifetime, using the

128 256 512 1024 2048
Average Node Bandwidth

(bytes/sec)

90

92

94

96

98

100

V
al

ue
 R

et
ri

ev
ed

(%
 o

f 
O

pt
im

al
)

Uniform
Exponential
Zipfian

Figure 8: Effect of varying download bandwidth. Lance maintains a
high degree of optimality as the per-node download bandwidth is varied.
Here results are shown for the three synthetic distributions across a 25 node
tree topology and the cost-bottleneck scoring function. Note that the y-axis
starts at 90%.

25-node tree topology and a Zipfian data value distribution. As the
figure shows, the cost-bottleneck scoring function maintains a high
degree of optimality as the network bandwidth changes.

To illustrate the effect of varying lifetime targets in more de-
tail, Figure 5 shows how the optimal solution transitions between
bandwidth-dominant and energy-dominant constraints as the target
lifetime increases. At low lifetime targets, the system is bandwidth
constrained and cannot download data fast enough to exhaust the
nodes’ batteries. At high lifetime targets, the system is energy con-
strained and cannot download continuously without exhausting the
nodes’ batteries.

7.3 Bandwidth adaptation
Next, we evaluate the impact of varying the download bandwidth

in Figure 8, using the 25-node tree topology and the cost-bottleneck
scoring function. We vary the per-node download bandwidth from
128 to 2048 bytes/s and peg the target lifetime at 8 months. As the
figure shows, Lance performs very well across the range of band-
widths, with optimality greater than 97% in all cases.

7.4 Effect of cost vector error
Our last simulation study evaluates the effect of introducing er-

rors into estimated download cost. This experiment uses the 25-
node topology, cost-bottleneck scoring function, and an exponen-
tial data distribution. As described in Section 3.5, estimating the
cost of performing different operations a priori can be difficult. As
shown in Figure 4, even a 40% error in each component of the cost
vector c̄i for a given ADU only degrades optimality by approxi-
mately 15%. We conclude that accurate estimations of download
costs are not strictly necessary to achieve good performance.

7.5 Testbed experiments
In this section, we present results from the Lance system running

on the MoteLab testbed, in 25-node and 50-node configurations
shown in Figure 9. These experiments stress the system in a real-
istic setting subject to radio interference and congestion, and ex-
ercise the multihop routing protocol, Fetch reliable data-collection
protocol, and ADU summary traffic generated by the nodes. For
these experiments, we injected artificial ADU values directly into
each node rather than relying on the nodes sampling real sensor
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Figure 9: Topologies for testbed experiments. This graph shows the 25 (a) and 50 (b) node topologies used for our testbed experiments.
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Figure 10: Optimality and energy use in the 50-node testbed experiment. Lance achieved near-optimal performance during this 8-hour testbed experi-
ment, retrieving 98% of the value obtained by the offline optimal algorithm.

data; this approach allows us to perform repeatable experiments
that explore a wider range of ADU value distributions. We use the
cost-bottleneck scoring function.

Figure 10 shows the results of a 50-node testbed experiment us-
ing a Zipfian data distribution and a target lifetime of 6 months.
The upper portion of the figure shows the amount of data value
obtained by Lance from each node, compared to the optimal solu-
tion (which was computed offline). Nodes are sorted by decreasing
optimal value. As the figure shows, Lance achieves very close to
the optimal solution, with an optimality of 98% overall. In some
cases, Lance incorrectly downloads more data from some nodes
and less data from others; this is due to the inherent limitations
of an online solution that cannot foresee future ADU values. The
lower portion of the figure shows the energy breakdown for each
node with downloading, forwarding, and overhearing costs shown.
Some nodes consume more than others because of their location
in the routing tree. For example, node 103 in uses a great deal of
energy for routing packets as it is one hop from the base station,
although no ADUs are ever downloaded from that node.

Finally, we demonstrate the use of Lance’s policy modules. For
this experiment, we use a distribution of ADU data values based on
a 6-hour seismic trace collected at Reventador Volcano, Ecuador
in 2005 [26]. The raw seismic data is divided into ADUs of 36
KB and ADU values vi are assigned by computing the ratio of two
EWMA filters on the data; this assigns greater value to ADUs that
contain earthquakes, as described in Section 8.3. For each node

in the 25-node topology, the ADU values from the seismic trace
are attenuated based on a hypothetical signal source and assigned
to each of the 25-nodes based on their location with respect to the
signal source. We then enable a policy module chain, as described
in Section 4, that assigns higher priority to ADUs that correspond
to correlated seismic activity across the network.

Figure 11 shows the result of this experiment running on the
MoteLab testbed. The upper portion of the figure shows the ADU
values over time; the middle portion, the set of ADUs downloaded
by the system with no policy modules in use; and the lower portion,
the ADUs downloaded with the policy module chain in use. As the
figure shows, the policy modules cause the network to prefer cor-
related seismic events and download an ADU from all nodes in the
network when such an event is detected. Gaps in the set of ADUs
downloaded are due to download timeouts. In one case, a single
ADU is downloaded spuriously due to an incorrect value being re-
ported by that node to the base station. This use of policy modules
shows the drastic change in the system behavior that is affected
without programming the sensor nodes themselves.
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Figure 11: Usage of policy modules to affect download distribution.
Here we illustrate the use of policy modules in the context of the volcano-
monitoring application. The graph compares the download behavior of the
system with and without the policy module chain described in Section 8.3,
which assign greater values to ADUs corresponding to correlated seismic
activity. The graph is colored at a particular timestamp and node ID if we
downloaded that signal from that node. The top graph shows the ADU val-
ues over time, with the threshold for the filter component of the policy
module chain indicated.

8. FIELD DEPLOYMENT AT
TUNGURAHUA VOLCANO

To evaluate the performance of Lance in a real field setting, we
undertook a one week deployment of eight sensor nodes at Tungu-
rahua Volcano, Ecuador, in August 2007. Lance was used to man-
age the bandwidth resources of the sensor network, as described
below. Time and budget constraints prevented us from deploying
a larger network for longer period of time. An earlier version of
Lance was used in this deployment that did not explicitly model
energy cost in the download manager. However, due to the short
duration of the deployment, we knew that the battery lifetime used
would be more than adequate (two D-cell batteries offer a lifetime
of approximately 12 days with this platform). Our primary goal
was to validate Lance’s operation in a field campaign, as well as to
identify challenges that only arise in real deployments.

The hardware design was based on one used in a previous vol-
cano sensor network deployment [26]. Each sensor node consisted
of a TMote Sky module coupled with a custom 24-bit multichan-
nel ADC board. The network measured seismic signals using 4.5 Hz
geophones and infrasonic signals with small electret microphones
attached to each node. Data was sampled at 100 Hz per channel. As
shown in Figure 12, seven of the nodes were deployed in a three-
armed “star” topology radiating away from a central hub node, with
two nodes per arm. The eighth node was colocated with the hub and
transmitted an unreliable continuous stream of sensor data packets
for establishing ground truth. A separate gateway node relayed data
(using a FreeWave radio modem) to the base station laptop at the

Tungurahua summit

75
0 

m 8 km to observatory

Figure 12: Location of the Tungurahua sensor network deployment.

Node ADUs downloaded Mean throughput
100 311 651.0 B/sec
101 131 446.8 B/sec
102 262 445.8 B/sec
103 292 424.4 B/sec
104 150 256.8 B/sec
105 66 453.7 B/sec
106 20 253.4 B/sec
Total 1232 431.5 B/sec

Figure 13: Download performance during the deployment.

volcano observatory, 8 km from the deployment site. Time syn-
chronization was established using FTSP [19] with a single GPS
receiver as the root of the synchronization tree. We experimented
with two different summarization functions as well as several dif-
ferent policy modules during the field deployment.

8.1 Overall performance and data yield
The sensor network was operational for a total of 71 hours, out

of which the Lance download manager ran for a total of 56 hours.
During this time, Lance successfully downloaded 1232 ADUs, or
77 MB of raw data. An additional 308 downloads failed due to
timeout or stale summary information, for an overall success rate
of 80%. 11012 unique ADU summaries were received from the
network, representing an aggregate of 688 MB of sampled data.
Lance therefore downloaded approximately 11% of the data pro-
duced by the network. Figure 13 summarizes the number of ADUs
downloaded and the mean throughput for each node.

Figure 14 shows a breakdown of the packets received at the base
station for a representative time period. Fetch download packets
consumed the majority of the bandwidth, followed by the contin-
uous sampling packets. The latter is a debugging feature allowing
us to visualize the seismic activity from a single node in real time,
and is entirely optional. Every node sent a periodic heartbeat to the
base station every 10 sec, and a storage summary every 109 sec. As
the figure shows, this overhead is a small percentage (less than 5%)
of the overall network traffic.
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a small fraction of the overall bandwidth.
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Figure 15: Effect of DC bias on RSAM summarization function. Each
point represents the ADU value received at the base station, and the tri-
angles indicate those ADUs that were downloaded by Lance. Since nodes’
RSAM values are offset significantly from each other, Lance prefers down-
loading from the node with the largest positive bias.

8.2 RSAM-based summarization
The system as initially deployed computed the RSAM [20] as the

value for each ADU. This approach was intended to prioritize data
based on the overall level of seismic activity. We experienced two
problems as soon as the system was fielded. First, the RSAM cal-
culation was sensitive to DC bias in the seismometer signal, caus-
ing Lance to generally prefer downloading ADUs from one or two
nodes (those with the largest positive bias). Figure 15 shows this
effect, with Lance only downloading ADUs from node 103.

This problem was easily corrected, without any node software
changes, by introducing a policy module at the base station to pro-
cess the raw RSAM values received from each node and filter out
the DC bias. This was achieved by computing the median RSAM
value over each 30-minute window of raw RSAM values on each
node, and subtracting the median from the RSAM.

The second problem with the RSAM summarization function
was caused by the uncharacteristically low level of seismicity at
the volcano throughout the deployment. We observed only about

20 volcano-tectonic earthquakes and no clear explosions, whereas
the previous week, Tungurahua exhibited dozens of earthquakes
each day. As a result, the RSAM summarization function was
generally unable to distinguish between actual seismic activity and
noise. We corrected this problem by switching to a different sum-
marization function (described below) that was designed to pick
out small earthquakes.

To evaluate Lance’s behavior with respect to an “optimal” sys-
tem, we took the 8483 RSAM summaries received during a 16-hour
period when the debiasing filter was enabled. Using this informa-
tion, we compute the set of ADUs that the optimal system would
have downloaded, with complete knowledge of all ADUs but lim-
ited to the same time duration the original network was operating.
We assume the download throughput for a given node is always
the mean throughput for that node observed during the deployment
(Figure 13). This calculation ignores energy constraints because
the deployed system did not consider energy costs.

An optimal system would have downloaded 392 out of the 8483
ADUs, whereas the actual system downloaded 418 ADUs during
this time.1 The total value of ADUs downloaded by the optimal sys-
tem is 10678, whereas the value of the actual network was 10629,
for an optimality of 99.5%. Lance did an exceptional job of ex-
tracting the highest-value data from the network using our online
heuristic algorithm.

8.3 EWMA-based summarization function
Given the low level of volcanic activity, after the first 25 hours

of the deployment we chose to reprogram the network to use a dif-
ferent summarization function that is designed to pick out small
earthquakes from background noise. This function computes the
maximum ratio of two EWMA filters over the seismic signal; it is
similar to that described in [26]. Due to code size limitations on the
motes, it was necessary to manually reprogram each node with the
new summarization function, which took two teams about 4 hours.

This summarization function reports a high value for an ADU
that appears to contain an earthquake or other seismic event. How-
ever, there is no guarantee that the event will be centered in the
ADU: in the worst case, the earthquake might occur at the very be-
ginning or very end of the ADU, causing the initial seismic P-wave
arrival or waveform coda to be stored in adjacent ADUs with low
value. To avoid this problem, we made use of the timespread
policy module that detects ADUs with an elevated value (over a
fixed threshold) and assigns the immediately preceding and suc-
ceeding ADUs the same value. By dilating the value over time,
Lance should download all three of the ADUs and maximize the
probability that a given earthquake signal is entirely downloaded.

As with the RSAM-based summarization function, we estimate
the optimal set of ADUs that an oracle would have downloaded.
During a 25-hour period, the network reported 11012 unique ADU
summaries. An optimal system would have downloaded 554 ADUs
with total value 577377. The actual network downloaded 518 ADUs
with a value of 539115, for an optimality of 93.3%.

As a final evaluation metric, we wish to consider how well Lance,
configured in this manner, was able to download seismic signals
representing earthquakes. Given the low level of volcanic activity,
it turns out that most of the ADUs downloaded by Lance contain
no discernible seismic signal. In fact, upon manual inspection of
the 518 ADUs downloaded during this period, we identified only

1The optimal system would download fewer ADUs than the real
system due to the variation in the throughput to each node: the op-
timal system would download more ADUs from nodes with lower
throughput, thereby limiting the total number of ADUs it could
download.
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Figure 16: Lance download behavior overlayed with average ADU
value. The top plot shows the continuous seismic signal collected by a sin-
gle node. The lower plot shows the average value of ADUs and the number
of ADUs downloaded for each window.

20 ADUs showing a clear earthquake signal, corresponding to only
9 separate seismic events.2 Note that we did not configure Lance
to explicitly download correlated earthquakes as described in Sec-
tion 5, so we would not expect a high degree of coverage for the
same event across multiple nodes.

Figure 16 shows the behavior of Lance during a representative
83-minute period. In the figure, we have broken time into windows
of one-half an ADU duration (55 sec in this case), and computed
the mean ADU value as well as the number of downloaded ADUs
that overlap each time window. As the data shows, elevated seis-
mic activity is well-correlated with an increase in the ADU value
from across the network, as well as the number of downloaded
ADUs. Moreover, the few cases of clear seismic activity in the
trace (at times 111000, 112700, and so forth) tend to have more
ADUs downloaded. Of the 9 separate seismic events, a total of
27 ADUs were downloaded, representing a per-event “coverage”
of 3 ADUs per event. This represents just under half of the 7 nodes
participating in the network.

9. CONCLUSIONS AND FUTURE WORK
Lance is intended to address the limited energy and bandwidth

resources in sensor networks by allowing applications to target re-
source usage at the highest value data collected by the network,
subject to a lifetime target. We have shown that the Lance archi-
tecture permits a wide range of application-specific resource man-
agement policies to be constructed atop several simple underlying
mechanisms. Our results show that Lance achieves near-optimal
data retrieval under a range of energy and bandwidth limitations, as
well as varying data distributions. The analysis of our deployment
at Tungurahua shows how Lance can be effective in a field setting.

The principles guiding Lance’s design also lead to several lim-
itations we hope to address in future work. Lance’s linear policy
modules are easy to use and compose, although it remains unclear
whether more complex interactions between policy modules are
needed. Finally, we hope to study the use of more sophisticated
node-level data processing, including feature extraction, adaptation
to changing energy availability, and data summarization. The com-
plications introduced by these features must be balanced against
maintaining the simplicity of our current design.
2One seismologist remarked that we “fixed the volcano” by placing
our sensors on it.
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