LiveNet: Using Passive Monitoring to
Reconstruct Sensor Network Dynamics

Bor-rong Chen, Geoffrey Peterson, Geoff Mainland and Matt Welsh

School of Engineering and Applied Sciences,
Harvard University,
Cambridge MA 02138, USA
{brchen, glpeters ,mainland,mdw}@eecs .harvard.edu

Abstract. We describe LiveNet, a set of tools and analysis methods
for reconstructing the complex behavior of a deployed sensor network.
LiveNet is based on the use of multiple passive packet sniffers co-located
with the network, which collect packet traces that are merged to form a
global picture of the network’s operation. The merged trace can be used
to reconstruct critical aspects of the network’s operation that cannot be
observed from a single vantage point or with simple application-level in-
strumentation. We address several challenges: merging multiple sniffer
traces, determining sniffer coverage, and inference of missing informa-
tion for routing path reconstruction. We perform a detailed validation
of LiveNet’s accuracy and coverage using a 184-node sensor network
testbed, and present results from a real-world deployment involving phys-
iological monitoring of patients during a disaster drill. Our results show
that LiveNet is able to accurately reconstruct network topology, deter-
mine bandwidth usage and routing paths, identify hot-spot nodes, and
disambiguate sources of packet loss observed at the application level.

1 Introduction

As sensor networks become more sophisticated and larger in scale, better tools
are needed to study their behavior in live deployment settings. Understanding
the complexities of network dynamics, such as the ability of a routing protocol
to react to node failure, or an application’s reaction to varying external stimuli,
is currently very challenging. Unfortunately, few good tools exist to observe and
monitor a sensor network deployment in situ.

In this paper, we describe LiveNet, a set of tools and techniques for recording
and reconstructing the complex dynamics of live sensor network deployments.
LiveNet is based on the use of passive monitoring of radio packets observed
from one or more sniffers co-deployed with the network. Sniffers record traces
of all packets received on the radio channel. Traces from multiple sniffers are
merged into a single trace to provide a global picture of the network’s behavior.
The merged trace is then subject to a series of analyses to study application
behavior, data rates, network topology, routing protocol dynamics, and packet
loss.

Although a passive monitoring infrastructure can increase cost, we argue
that in many cases this is the ideal approach to observing and validating a sen-
sor network’s operation, and in some cases is the only way to effectively monitor
the network. LiveNet brings a number of benefits over traditional network mon-
itoring solutions. First, LiveNet decouples packet capture from trace analysis,
allowing “raw” packet traces to be studied in many different ways. In contrast,
in-network monitoring relies on preconceptions of the network’s operation and
failure modes, and can fail when the system does not behave as expected. Second,
LiveNet requires no changes to the network being monitored, which is prudent
for reasons of performance and reliability. Third, the LiveNet infrastructure can
be deployed, reconfigured, and torn down separately from the network under
test. LiveNet can be set up on an as-needed basis, such as during the initial
sensor network deployment, or during periods when unexpected behavior is ob-
served. Finally, it is possible to use LiveNet in situations where sensor nodes are
mobile or physical access to sensor nodes is unavailable. We describe the use of
LiveNet during a disaster drill involving multiple mobile patient sensor nodes,
fixed repeater nodes, and base stations. In this scenario, directly instrumenting
each node would have been prohibitive.

Using passive monitoring to understand a sensor network’s behavior raises a
number of unique challenges. First, we are concerned with the coverage of the
LiveNet sniffer infrastructure in terms of total number of packets observed by the
system. Second, the merging process can be affected by incomplete packet traces
and lack of time synchronization across sniffers. Third, understanding global
network behavior requires extracting aggregate information from the detailed
traces. We describe a series of analyses, including a novel path inference algorithm
that derives routing paths based on incomplete packet traces.

We evaluate the use of LiveNet in the context of a sensor network for monitor-
ing patient vital signs in disaster response settings [7, 10]. We deployed LiveNet
during a live disaster drill undertaken in August 2006 in which patients were
monitored and triaged by emergency personnel following a simulated bus acci-
dent. We also perform an extensive validation of LiveNet using measurements
on a 184-node indoor sensor network testbed.

Our results show that deploying the LiveNet infrastructure along with an
existing sensor network can yield a great deal of valuable information on the
network’s behavior without requiring additional instrumentation or changes to
the sensor network code. Our packet merging process and trace analyses yield
an accurate picture of the network’s operation. Finally, we show that our path
inference algorithm correctly determines the routing path used without explicit
information from the routing protocol stack itself.

2 Background and Motivation

Sensor networks are becoming increasingly complex, and correct behavior of-
ten involves subtle interactions between the link layer, routing protocol, and
application logic. Achieving a deep understanding of network dynamics is ex-

tremely challenging for real sensor network deployments. It is often important
to study a sensor deployment in situ, as well as in situations where it is impos-
sible or undesirable to add additional instrumentation. Although simulators [6,
15] and testbeds [4,17] are invaluable for development, debugging, and testing,
they are fundamentally limited in their ability to capture the full complexity of
radio channel characteristics, environmental stimuli, node mobility, and hard-
ware failures that arise in real deployments. This suggests the need for passive
and ezternal observation of a sensor network’s behavior “in the wild.”

Several previous systems focus on monitoring and debugging live sensor de-
ployments. Sympathy [11] is a system for reasoning about sensor node failures
using information collected at sink nodes in the network. Sympathy has two
fundamental limitations that we believe limit its applicability. First, Sympathy
requires that the sensor node software be instrumented to transmit periodic
metrics back to the sink node. However, it is often impossible or undesirable
to introduce additional instrumentation into a deployed network after the fact.
Second, Sympathy is limited to observe network state at sink nodes, which may
be multiple routing hops from the sensor nodes being monitored. As a result,
errant behavior deep in the routing tree may not be observed by the sink. How-
ever, we do believe that LiveNet could be used in conjunction with a tool like
Sympathy to yield more complete information on network state.

SNMS [16] and Memento [14] are two management tools designed for in-
specting state in live sensor networks. They perform functions such as neigh-
borhood tracking, failure detection, and reporting inconsistent routing state.
EnviroLog [8] is a logging tool that records function call traces to flash, which
can be used after a deployment to reconstruct a node’s behavior. Like Sympathy,
these systems add instrumentation directly into the application code.

In contrast to these approaches, LiveNet is based on the use of passive sniffer
nodes that capture packets transmitted by sensor nodes for later analysis. Our
approach is inspired by recent work on passive monitoring for 802.11 networks,
including Jigsaw [3, 2] and Wit [9]. In those systems, multiple sniffer nodes collect
packet traces, which are then merged into a single trace representing the net-
work’s global behavior. A series of analyses can then be performed on the global
trace, for example, understanding the behavior of the 802.11 CSMA algorithm
under varying loads, or performance artifacts due to co-channel interference. Al-
though LiveNet uses a similar trace merging approach to these systems, we are
focused on a different set of challenges. In 802.11 networks, the predominant
communication pattern is single hop (between clients and access points), and
the focus is on understanding link level behavior. In contrast, sensor networks
exhibit substantially more complex dynamics, due to multihop routing and co-
ordinated behavior across nodes. SNIF [12] is the only other passive monitoring
system for sensor networks of which we are aware. Although there are some
similarities, SNIF differs from LiveNet in several important respects. SNIF is
focused primarily on debugging the causes of failures in sensor networks, while
we are more interested in time-varying dynamics of network behavior, such as
routing path dynamics, traffic load and hotspot analysis, network connectivity,

and recovering the sources of path loss. As a result, SNIF requires less accuracy
in terms of trace merging and sniffer coverage than we require with LiveNet.
Also, SNIF' uses sniffers that transmit complete packet traces to a base station
via a Bluetooth scatternet. Apart from the scalability limitations of the scatter-
net itself, interference between Bluetooth and 802.15.4 radios commonly used
by sensor networks is a concern, potentially causing the monitoring infrastruc-
ture to interfere with the network’s operation.! In LiveNet, we decouple packet
capture from trace analysis and forego the requirement of real-time processing,
which we believe is less important for most uses of our system.

3 LiveNet Architecture

LiveNet consists of three main components: a sniffer infrastructure for passive
monitoring and logging of radio packets; a merging process that normalizes mul-
tiple sniffer logs and combines them into a single trace; and a set of analyses
that make use of the combined trace. While packet capture is performed in real
time, merging and analysis of the traces is performed offline due to high storage
and computational requirements. While providing real-time analysis of traffic
captured by LiveNet would be useful in certain situations, we believe that offline
trace merging and analysis meets many of the needs of users wishing to debug
and analyze a network deployment.

3.1 Sniffer infrastructure

The first component of LiveNet is a set of passive network sniffers that capture
packets and log them for later analysis. Conceptually the sniffer is very simple,
consisting of a sensor node either logging packets to local flash or over its serial
port to an attached host. Sniffers timestamp packets as they are received by the
radio, to facilitate trace merging and timing analysis.

We envision a range of deployment options for LiveNet sniffers. Sniffers can
be installed either temporarily, during initial deployment and debugging, or per-
manently, in order to provide an unobtrusive monitoring framework. Temporary
sniffers could log packets to flash for manual retrieval, while permanent sniffers
would typically require a backchannel for delivering packet logs. Another scenario
might involve mobile sniffers, each carried by an individual around the sensor
network deployment site. This would be particularly useful for capturing packets
to debug a performance problem without disturbing the network configuration.

3.2 Merging process

Given a set of sniffer traces {S;...Sk}, LiveNet’s merging process combines
these traces into a temporally-ordered log that represents a global view of net-
work activity. This process must take into account the fact that each trace only

! The SNIF hardware is based on previous-generation radios operating in the 868 MHz
band; it is unclear whether a Bluetooth scatternet backhaul could be used with
current 802.15.4 radios.

contains a subset of the overall set of packets, with a varying degree of overlap.
Also, we do not assume that sniffers are time synchronized, requiring that we
normalize the timebase for each trace prior to merging. Finally, due to the large
size of each trace, we cannot read traces into memory in their entirety. This
requires a progressive approach to trace merging.

Our merging algorithm is somewhat similar to Jigsaw [3], which is designed
for merging 802.11 packet traces. We briefly describe our algorithm here, re-
ferring the reader to a technical report [13] for further details. The merging
algorithm operates in two phases. In the first phase, we compute a time map-
ping that maps the timebase in each trace S; to a common (arbitrary) timebase
reference Sy. Given a pair of traces S; and S;, we identify a unique packet p
that appears in both traces. We calculate the timebase offset between S; and
S; as the difference in the timestamps between the two packets in each trace,
Ai,j = t;(p) —t;(p). Aij represents a single edge in a time graph (where nodes
are traces and edges are timebase offsets between traces). The offset Ai, 0 from
a given trace S; to the reference Sy is then computed as the combined timebase
offset along the shortest path in the time graph from .S; to Sp.

In the second phase, we progressively scan packets from each trace and apply
the time correction A4; . Packets are inserted into a priority queue ordered by
global time and identical packets from across traces are merged. After filling
the priority queue to a given window size W, we begin emitting packets, simply
popping the top of the priority queue and writing each packet to a file. The
algorithm alternates between scanning and emitting until all traces have been
merged.

There are two potential sources of error in our algorithm. First, due to its
progressive nature, it is possible that a packet p will be “prematurely” emitted
before all instances of p in each trace have been scanned, leading to duplicates
in the merged trace. In practice, we find very few duplicates using a window
size W = 10 sec. Second, if link-layer ARQ has been used by the application,
multiple retransmissions of the same packet will appear in the sniffer traces,
complicating the merging process. For example, if 4 copies of a packet p appear
in trace S1, and 2 copies in trace Ss, it is not obvious how many transmissions
of the packet occurred in total. We opt to adhere to the lower bound, since we
know at least 4 transmissions of p occurred.

4 Trace Analysis

In this section, we describe a range of analysis algorithms for reconstructing
a sensor network’s behavior using the merged LiveNet trace. Several of these
algorithms are generic and can be applied to essentially any type of traffic, while
other analyses use application-specific knowledge.

4.1 Coverage analysis

The most basic analysis algorithm attempts to estimate the coverage of the
LiveNet sniffer infrastructure, by computing the fraction of packets actually

transmitted by the network that were captured in the merged packet trace. Cov-
erage can also be computed on a per-sniffer basis, which is useful for determining
whether a given sniffer is well-placed. Let us define C;(n) as the coverage of snif-
fer S; with respect to node n, which is simply the fraction of packets received
by S; that were actually transmitted by n. Estimating the number of pack-
ets transmitted by n can be accomplished using packet-level sequence numbers,
or knowledge of the application transmission behavior (e.g., if the application
transmits a periodic beacon packet). We assume that packet loss from nodes n
to sniffers S; is uniform, and does not depend on the contents of the packets.
Note that this assumption might not be valid, for example, if longer packets are
more likely to experience interference or path loss.

4.2 Overall traffic rate and hotspot analysis

Another basic analysis is to compute the overall amount of traffic generated by
each node in the network, as well as to determine “hotspots” based on which
nodes appear to be the source of, or destination of, more packets than others.
Given the merged trace, we can start by counting the total number of packets
originating from or destined to a given node n. Because LiveNet may not observe
all actual transmissions, we would like to infer the existence of other packets.
For example, if each transmission carries a unique sequence number we can infer
missing packets by looking for gaps in the sequence number space. Coupled
with topology inference (Section 4.3), one can also determine which nodes were
likely to have received broadcast packets, which do not indicate their destination
explicitly.

4.3 Network connectivity

Reconstructing radio connectivity between nodes is seemingly straightforward:
for each packet from node a to b, we record an edge a — b in the connectivity
graph. However, this approach may not reconstruct the complete topology, since
two nodes a and b within radio range may choose not to communicate directly,
depending on the routing protocol in use. We make use of two approaches. First,
if one assumes that connectivity is symmetric, an edge b — a can be recorded
alongside a — b. Although asymmetric links are common in sensor networks [1],
this algorithm would establish whether two nodes are potential neighbors.

The second method is to inspect routing control packets. For example, sev-
eral routing protocols, such as TinyOS’ MultihopLQI, periodically transmit their
neighbor table containing information on which nodes are considered neighbors,
sometimes along with link quality estimates. These packets can be used to re-
construct the network connectivity from the sniffer traces. Note that this infor-
mation is generally not available to a base station, which would only overhear
control packets within a single radio hop.

{A,B} {B,C} {A,C} {B,A} {C,B} {C.A}
o+ II- I+ M- |+ 0- [+ TII- |+ I- i+ 1-

+ 10 -06 10 06|06 100 00 100 -1.0

2 109 -07109 -07107 0910 -090 -090 -09
Y s 0808 0808 080 080 -08l0 -08
5 :4 07 -09 107 -09109 0710 -09]0 -09)0 -09
5 06 -1.0 06 -10 10 -06 0 100 .00 -1.0

The figure at left shows observed and inferred routing paths for a network of 3 nodes over
5 timesteps. Observed packet transmissions are shown as solid arrows; potential links are
shown as dashed arrows. At time t;, packets A—B and B—C are observed. At time ts,
packet A—C is observed. At intermediate times, the inferred path is shown in bold. At t3,
both paths A—B—C and A—C have equal probability.

The table above shows the positive (I1+) and negative (II-) score for each link at each timestep.
@ © Values in boldface are direct observations; thosein italics are time-dilated scores based on past
or future values. Here we assume a time-dilation constant s = 0.1.

Fig. 1. Path inference example.

4.4 Routing path inference

One of the more interesting analyses involves reconstructing the routing path
taken by a packet traveling from a source node s to a destination d. The simplest
case involves protocols that use source-path routing, in which case the complete
routing path is contained within the first transmission of a packet from the
originating node. In most sensor network routing protocols, however, the routing
state must be inferred by observing packet transmissions as packets travel from
source to destination. However, because the merged packet trace may not contain
every routing hop, there is some ambiguity in the routing path that is actually
taken by a message. In addition, the routing path may evolve over time. As a
worst case, we assume that the route can change between any two subsequent
transmissions from the source node s.

The goal of our path inference algorithm is to determine the most probable
routing path P(s,d,t) = (s,n1,...ng, d) at a given time t. We begin by quantizing
time into fixed-sized windows; in our implementation, the window size is set to
1 sec. For each possible routing hop a — b, we maintain a score II(a,b,t) that
represents the likelihood of the hop being part of the routing path during the
window containing ¢. II(a,b,t) is calculated using two values for each link: a
positive score It (a,b,t) and a negative score II™(a,b,t). The positive score
represents any positive information that a link may be present in the routing
path, based on an observation (possibly at a time in the past or future) that
a message was transmitted from a to b. The negative score represents negative
information for links that are excluded from the routing path due to the presence
of other, conflicting links, as described below.

Figure 1 shows our algorithm at work on a simple example. We begin by
initializing 1T (a, b, t) = I~ (a,b,t) = 0 for all values of a, b, and ¢. The merged
packet trace is scanned, and for each observed packet transmission a — b, we

set IT*(a,b,t) = 1. For each conflicting link a’ — b, we set I~ (a’,b',t) = —1.
A link conflicts with a — b if it shares one endpoint in common (i.e., a = a’ or
b=1"V); b — ais also conflicted by definition.

Once the scan is complete, we have a sparse matrix representing the values of
ITt and IT~ that correspond to observed packet transmissions. To fill in the rest
of the matrix, we time dilate the scores, in effect assigning “degraded” scores to
those times before and after each observation. Given a time ¢ for which no value
has been assigned for IT* (a, b,), we look for the previous and next time windows
tprev =t — 0p and tpeqe = t 4 05 that contain concrete observations. We then set
I (a,b,t) = max(max(0, [T (a, b, tyep) — 5-05), max(0, I (a, b, tprey) — 5+ 0p)).
That is, we take the maximum value of IIt time-dilated backwards from t,,.; or
forwards from t,,,, capping the value to > 0. Here, s is a scaling constant that
determines how quickly the score degrades per unit time; in our implementation
we set s = 0.1. Similarly, we fill in values for missing 1T~ (a,b,t) values, also
capping them to be < 0.

Once we have filled in all cells of the matrix for all links and all time windows,
the next step is to compute the final link score I1(a,b,t). For this, we set the
value to either IT*(a,b,t) or II~(a,b,t) depending on which has the greater
absolute value. For links for which we have no information, I7(a,b,t) = 0. The
final step is to compute the most likely routing path at each moment in time. For
this, we take the acyclic path that has the highest average score over the route,
namely: P*(s,d,t) = arg maxyp(s,q,¢) Zl:{nl,n2}eP(s,d7t) II(ny,ne,t)/|P(s,d,t)|.
The choice of this metric has several implications. First, links for which we
have no information (II(a,b,t) = 0) diminish the average score over the path.
Therefore, all else being equal, our algorithm will prefer shorter paths over longer
ones. For example, consider a path with a “gap” between two nodes for which
no observation is ever made: (s,m1,...7...,n9,d). In this case, our algorithm
will fill in the gap with the direct hop n; — ns since that choice maximizes the
average score over any other path with more than one hop bridging the gap.

Second, note that the most likely path P* may not be unique; it is possible
that multiple routes exist with the same average score. In this case, we can
use network connectivity information (Section 4.3) to exclude links that are not
likely to exist in the route. While this algorithm is not guaranteed to converge
on a unique solution, in practice we find that a single route tends to dominate
for each time window.

4.5 Packet loss determination

Given a dynamic, multihop sensor network, one of the most challenging problems
is understanding the causes of data loss from sources to sinks. The failure of a
packet to arrive at a sink can be caused by packet loss along routing paths, node
failures or reboots, or application-level logic (for example, a query timeout that
causes a source node to stop transmitting). Using LiveNet we can disambiguate
the sources of packet loss, since we can observe packet receptions from many
vantage points, rather than only at the sink node.

Received by base @
Observed by LiveNet O

200 | ’
150 | Query Timeout / Reboot Path Loss /)(! |

Query Active
100 q
Query Inactive)
()
U
50 - , Unobserved Los§

Query Reset: Y

° L
0
10:19 10:20 10:21 10:22 10:23 10:24 10:25 10:26
Time

Query Reply Packet Sequence Number

Fig. 2. Determining the causes of packet loss.

Figure 2 shows the behavior of an individual node during the disaster drill
described in Section 7. Each point represents a packet either observed by LiveNet
or received at the base station (or both). Here, the node is transmitting packets
at 1 Hz as long as the query is active; however, the query will timeout if a renewal
message is not received before it expires. Each packet carries a monotonically
increasing sequence number. By combining information from the LiveNet and
base station logs, we can break down packet loss in terms of loss along the routing
path to the sink, inactive query periods, and unobserved loss; that is, packets
that were neither observed by LiveNet or the sink. For example, for the first
100 sec or so, the node is transmitting packets but none of them are received by
the sink, indicating a bad routing path. Query timeouts are easily detected by a
reset in the packet sequence numbers. Intervals between two subsequent queries
with no observed packets indicates a period with no active query.

5 Implementation

Our implementation of LiveNet consists of three components: the sniffer in-
frastructure, trace merging code, and analysis algorithms. The sniffers are im-
plemented as a modified version of the TinyOS TOSBase application, with two
important changes. First, the code is modified to pass every packet received
over the radio to the serial port, regardless of destination address or AM group
ID. Second, the sniffer takes a local timestamp (using the SysTime.getTime32()
call) on each packet reception, and prepends the timestamp to the packet header
before passing it to the serial port.

We observed various issues with this design that have not yet been resolved.
First, it appears that TMote Sky motes have a problem streaming data at high
rates to the serial port, causing packets to be dropped by the sniffer. In our
LiveNet deployment described below, a laptop connected to both a MicaZ and
a TMote Sky sniffer recorded more than three times as many packets from the
MicaZ. This is possibly a problem with the MSP430 UART driver in TinyOS.

Second, our design only records packets received by the Active Messages layer
in TinyOS. Ideally, we would like to observe control packets, such as acknowl-
edgments, as well as packets that do not pass the AM layer CRC check.

Our merging and analysis tools are implemented in Python, using a Python
back-end to the TinyOS mig tool to generate appropriate classes for parsing the
raw packet data. A parsing script first scans each raw packet trace and emits a
parsed log file in which each packet is represented as a dictionary mapping named
keys to values. Each key represents a separate field in the packet (source 1D,
sequence number, and so forth). The dictionary provides an extremely flexible
mechanism for reading and manipulating packet logs, simplifying the design of
the merging and subsequent analysis tools. The merging code is 657 lines of code
(including all comments). The various analysis tools comprise 3662 lines of code
in total. A separate library (131 lines of code) is used for parsing and managing
packet traces, which is shared by all of the merging and analysis tools.

6 Validation Study

The goal of our validation study is to ascertain the accuracy of the LiveNet
approach to monitoring and reconstructing sensor network behavior. For this
purpose, we make use of a well-provisioned indoor testbed, which allows us to
study LiveNet in a controlled setting. The MoteLab [17] testbed consists of
184 TMote Sky nodes deployed over three floors of the Harvard EECS building,
located mainly on bookshelves in various offices and labs. During the experiments
between 120-130 nodes were active. Each node is connected to a USB-Ethernet
bridge for programming and access to the node’s serial port. For our validation,
half of the nodes are used as sniffers and the other half used to run various
applications. Although such a sniffer ratio is much larger than we would expect
in a live deployment, this allows us to study the effect of varying sniffer coverage.

6.1 Sniffer reception rate

The first consideration is how well a single sniffer can capture packets at varying
traffic rates. For these experiments, we make use of a simple TinyOS application
that periodically transmits packets containing the sending node ID and a unique
sequence number. Figure 3 shows the reception rate of two sniffers (a MicaZ and
a TMote Sky) with up to 4 nodes transmitting at increasing rates. All nodes were
located within several meters of each other. Note that due to CSMA backoff, the
offered load may be lower than the sum of the transmitter’s individual packet
rates. We determine the offered load by computing a linear regression on the
observed packet reception times at the sniffer.

As the figure shows, a single sniffer is able to sustain an offered load of 100
packets/sec, after which reception probability degrades. Note that the default
MAC used in TinyOS limits the transmission rate of short packets to 284 pack-
ets/sec. Also, as mentioned in Section 5, MicaZ-based sniffers can handle some-
what higher loads than the TMote Sky. We surmise this to be due to differences
in the serial I/O stack between the two mote platforms.

¢
/
}

Reception ratio(%)
@
3
Average coverage
o
=
.

0F vicaz —e— 01
o TmoteSky —@— o [Average coverage —*—
0 50 100 150 200 250 300 0 10 20 30 40 50 60 70
Offered load (pkts/sec) Number of sniffers
Fig. 3. Sniffer reception rate vs. offered Fig. 4. Sniffer coverage.

load.

6.2 Merge performance

Although LiveNet’s sniffer traces are intended for offline analysis, the perfor-
mance of the trace merging process is potentially of interest. For this experiment,
we merge up to 25 traces containing 1000 sec of packet data on an unloaded
2.4 GHz Linux desktop with 1 GB of memory. Merging two traces takes 301 sec,
10 traces 1418 sec, and 25 traces 2859 sec. The “break even” point where merging
time takes longer than the trace duration occurs at about 8-10 traces. This sug-
gests that for a modest number of traces, one could conceivably perform merging
in real time, although this was not one of our design goals. Note that we have
made no attempt to optimize the LiveNet merge code, which is implemented in
Python and makes heavy use of ASCII files and regular expression matching.

6.3 Coverage

The next question is how many sniffers are required to achieve a given coverage
in our testbed. We define coverage as the fraction of transmitted packets that
are received by the LiveNet infrastructure. There are 70 sniffer traces in total
for this experiment.

To compute the coverage of a random set of N traces, the most thorough,
yet computationally demanding, approach is to take all (?3) subsets of traces,
individually merge each subset, and compute the resulting coverage. Perform-
ing this calculation would be prohibitively expensive. Instead, we estimate the
coverage of N traces by taking multiple random permutations of the traces and
successively merge them, adding one trace at a time to the merge and computing
the resulting coverage, as described below.

Let S; represent a single trace and S = {S; ... S7} represent the complete
set of traces. Let M (S ... Sk) represent the merge of traces Sy ...Sk, and C(k)
represent the coverage of these k merged traces, as defined in Section 4.1. We
start by computing the coverage of the first trace Si, yielding C'(1). We then
merge the first two traces M(S1,S52) and compute the coverage C(2) of this

merge. Next, we successively add one trace at a time to the merge, computing
the resulting coverage for each trace until we have computed C(1)...C(70).

To avoid sensitivity to the order in which the original traces are numbered,
we generate five random permutations S’ of the original traces and compute the
coverage C(k) accordingly. Our final estimate of the coverage of k traces is the
average of the five values of C(k) computed for each of the permutations. The
results are shown in Figure 4.

As the figure shows, the first 17 traces yield the greatest contribution, achiev-
ing a coverage of 84%. After this, additional sniffers result in diminishing returns.
A coverage of 90% is reached with 27 sniffers, and all 70 sniffers have a coverage
of just under 99%. Of course, these results are highly dependent on the physi-
cal extent and placement of our testbed nodes. The testbed covers 3 floors of a
building spanning an area of 5226m?. Assuming nodes are uniformly distributed
in this area (which is not the case), this suggests that approximately one sniffer
per 193m? would achieve a coverage of 90%. Keep in mind that sniffer locations
were not planned to maximize coverage, and we are using the built-in antenna of
the TMote Sky. High-gain antennas and careful placement would likely achieve
better coverage with fewer nodes.

6.4 Merge accuracy

Next, we are interested in evaluating the accuracy of the merged trace. As de-
scribed earlier, our trace merging algorithm operates on fixed-length time win-
dows and could lead to duplicate or reordered packets in the merged trace. After
merging all 70 source traces from the previous experiment, we captured a total
of 246,532 packets. 2920 packets are missing from the trace (coverage of 98.8%).
There are a total of 354 duplicate packets (0.14%), and 13 out-of-order packets
(0.005%). We feel confident that these error rates are low enough to rely on the
merged trace for higher-level analyses.

6.5 Path inference

To test the path inference algorithm described in Section 4.4, we set up an
experiment in which one node routes data to a given sink node over several
multihop paths. The node is programmed to automatically select a new route to
the sink every 5 minutes. Since we know the routing paths in advance, we can
compare the path inference algorithm against ground truth.

Space limitations prevent us from presenting complete results here, though
we refer the reader to our technical report [13] for more details. In summary,
the path inference algorithm correctly determined the routing path chosen by
the network in all cases. When the routing path changed, the algorithm would
incorrectly determine that an “intermediate” route was being used, but this
would occur for no more than 1 or 2 sec until the correct route was observed.

ereless ECG

ereless pu\se oxlmeters AA_,_*

Fig. 5. The indoor treatment area of the disaster drill. Inset shows the electronic triage
tag.

7 Deployment Study: Disaster Drill

To evaluate LiveNet in a realistic application setting, we deployed the system
as part of a live disaster drill that took place in August 2006 in Baltimore, MD,
in collaboration with the AID-N team at Johns Hopkins Applied Physics Labo-
ratory and rescue workers from Montgomery County Fire and Rescue Services.
Disaster response and emergency medicine offer an exciting opportunity for use
of wireless sensor networks in a highly dynamic and time-critical environment.
Understanding the behavior of this network during a live deployment is essential
for resolving bugs and performance issues.

The disaster drill modeled a simulated bus accident in which twenty volunteer
“victims” were triaged and treated on the scene by 13 medics and firefighters
participating in the drill. Each patient was outfitted with one or more sensor
nodes to monitor vital signs, which formed an ad hoc network, relaying real-time
data back to multiple laptop base stations located at the incident command
post nearby. Each laptop displayed the triage status and vital signs for each
patient, and logged all received data to a file. The incident commander could
rapidly observe whether a given patient required immediate attention, as well as
update the status of each patient, for example, by setting the triage status from
“moderate” to “severe.”

The network consisted of two types of sensor nodes: an electronic triage
tag and a electrocardiograph (ECG) [5,10]. The triage tag incorporates a pulse
oximeter (monitoring heart rate and blood oxygen saturation using a small sen-
sor attached to the patient’s finger), an LCD display for displaying vital signs,
and multiple LEDs for indicating the patient’s triage status (green, yellow, or
red, depending on the patient’s severity). The triage tags are based on the Mi-
caZ mote with a custom daughterboard and case. The ECG node consists of a
TMote Sky with a custom sensor board providing a two-lead (single-channel)

40 . , .
query / status -

35 L query reply ——
route maintenance
30 L corrupted packets
all packets

25
20 |
15

Traffic rate (kbits/sec)

10 |

0 ;
10:10:00 10:15:00 10:20:00 10:25:00 10:30:00 10:35:00 10:40:00 10:45:00 10:50:00 10:55:00 11:00:00 11:05:0C
Time

Fig. 6. Overall traffic rate during the disaster drill.

electrocardiograph signal. In addition to the patient sensor nodes, a number of
static repeater nodes were deployed to assist with maintaining network connec-
tivity. The sensor nodes and repeaters all ran the CodeBlue system [7], which
is designed to support real-time vital sign monitoring and triage for disaster
response.

Our goal in deploying LiveNet was to capture detailed data on the operation
of the network as nodes were activated, patients moved from the triage to treat-
ment areas, and study the scalability and robustness of our ad hoc networking
protocols. In this situation, it would have been impossible to record complete
packet traces from each sensor node directly, motivating the need for a passive
monitoring infrastructure. We made use of 6 separate sniffer nodes attached to
3 laptops (the laptops had two sniffers to improve coverage).

Figure 5 shows a picture from the drill to give a sense of the setup. The drill
occurred in three stages. The first stage occurred in a parking lot area outdoors
during which patients were outfitted with sensors and initial triage performed.
In the second stage, most of the patients were moved to an indoor treatment
area as shown in the picture. In the third stage, two of the “critical” patients
were transported to a nearby hospital. LiveNet sniffers were placed in all three
locations. Our analysis in this paper focuses on data from 6 sniffers located at the
disaster site. The drill ran for a total of 53 minutes, during which we recorded a
total of 110548 packets in the merged trace from a total of 20 nodes (11 patient
sensors, 6 repeaters and 3 base stations).

8 Deployment evaluation

In this section, we perform an evaluation of the LiveNet traces gathered during
the disaster drill described in Section 7.

inferred query repl
30000 |~ query reply
observed query reply

1 26750

inferred status
25000 |-

10918

0.841

observed status
Query.
route maintenance

20000 |-

<
g
El
S

15000 |-

Coverage

10000 |-

| Ml

mmmmmmmmmmmmmmmmm
NNNNNNNNNNNNN

101 [T 7365
104 |ESSNETTOTSTT) 11588

)
3
<
=

Patient sensors Repeaters

100 0 2509

0.0

—— 0.711
o [0263
0.588
Packets

inks Total

Fig. 8. Inferred per-node packet traffic
Fig. 7. Per-node coverage during the drill. load during the drill.

8.1 General evaluation

As a general evaluation of the sensor network’s operation during the drill, we first
present the overall traffic rate and packet type breakdown in Figure 6 and 10.
These high-level analyses help us understand the operation of the deployed net-
work and can be used to discover performance anomalies that are not observable
from the network sinks.

As Figure 6 shows, at around time ¢ = 10 : 39 there is a sudden increase
in corrupted packets received by LiveNet: these packets have one or more fields
that appear to contain bogus data. Looking more closely at Figure 10, start-
ing at this time we see a large number of partially-corrupted routing protocol
control messages being flooded into the network. On closer inspection, we found
that these packets were otherwise normal spanning-tree maintenance messages
that contained bogus sequence numbers. This caused the duplicate suppression
algorithm in the routing protocol to fail, initiating a perpetual broadcast storm
that lasted for the entire second half of the drill. The storm also appears to have
negatively affected application data traffic as seen in Figure 6.

We believe the cause to be a bug in the routing protocol (that we have since
fixed) that only occurs under heavy load. Note that we had no way of observing
this bug without LiveNet, since the base stations would drop these bogus packets.

8.2 Coverage

To determine sniffer coverage, we make use of periodic status messages broadcast
by each sensor node once every 15 sec. Each status message contains the node ID,
sensor types attached, and a unique sequence number. The sequence numbers
allow us to identify gaps in the packet traces captured by LiveNet, assuming
that all status messages were in fact transmitted by the node.

Figure 7 shows the coverage broken down by each of the 20 nodes in the
disaster drill. There were a total of 4819 expected status messages during the

run, and LiveNet captured 59% overall. We observed 89 duplicate and out-of-
order packets out of 2924 packets in total, for an error rate of 3%. As the figure
shows, the coverage for the fixed repeater nodes is generally greater than for the
patient sensors; this is not too surprising as the patients were moving between
different locations during the drill, and several patients were lying on the ground.
The low coverage (26%) for one of the sink nodes is because this node was located
inside an ambulance, far from the rest of the deployment.

8.3 Topology and network hotspots

The network topology during the drill was very chaotic, since nodes were moving
and several nodes experienced reboots. Such a complex dataset is too dense to
show as a figure here. However, we can discuss a few observations from analyzing
the topology data. First, most nodes are observed to use several outbound links,
indicating a fair amount of route adaptation. There are multiple routing trees
(one rooted at each of the sinks), and node mobility causes path changes over
time. Second, all but two of the patient sensors have both incoming and outgoing
unicast links, indicating that patient sensors performed packet relaying for other
nodes. Indeed, one of the sink nodes also relayed packets during the drill. We
also observe that one of the patient sensors transmitted unicast packets to itself,
suggesting corruption of the routing table state on that node; this is a protocol
bug that would not have been observed without LiveNet.

Besides topology, it is useful to identify “hotspots” in the network by com-
puting the total number of packets transmitted by each node during the drill.
For several message types (query reply and status messages), we can also infer
the existence of unobserved packets using sequence numbers; this information
is not available for route maintenance and query messages. Figure 8 shows the
breakdown by node ID and packet type. Since we are counting all transmis-
sions by a node, these totals include forwarded packets, which explains the large
variation from node to node.

The graph reveals a few interesting features. Repeater nodes generated a
larger amount of traffic overall than the patient sensors, indicating that they
were used heavily during the drill. Second, node 62 (a repeater) seems to have
a very large number of inferred (that is, unobserved) query reply packets, far
more than its coverage of 83.6% would predict. This suggests that the node
internally dropped packets that it was forwarding for other nodes, possibly due
to heavy load. Note that with the information in the trace, there is no way to
disambiguate packets unobserved by LiveNet from those dropped by a node. If
we assume that our coverage calculation is correct, we would infer a total of 4108
packets; instead we infer a total of 15017. Node 62 may have then dropped as
many as (15017—4108) /15017 = 72% of the query replies it was forwarding. With
no further information, the totals in Figure 8 therefore represent a conservative
upper bound on the total traffic transmitted by the node.

22-62-104
22-68-104
22-21-25-104

22-21-25-62-104
22-21-25-68-104
22-21-64-62-104
220464

22-27-24-67-64-104
22-68-27-24-67-64-104 Paths inferred @

07t S, RS SRR > " E—— f)
05 ”: " o
0.5

0
-0.25
-0.5
-0.75
-1

Score © |

10:20:00 10:25:00 10:30:00 10:35:00
Time

Fig. 9. Routing paths for one of the patient sensors during the disaster drill. The
upper graph shows the inferred routing path over time, while the lower graph shows the
II score for the most probable path.

8.4 Path inference

Given the limited coverage of the LiveNet sniffers during the drill, we would not
expect the path inference algorithm to provide results as clear as those in our
testbed. As shown in Figure 9, we take a single patient sensor (node 22) and infer
the routing paths to one of the sink nodes (node 104). The results are shown in
Figure 9. As the figure shows, there are many inferred paths that lack complete
observations of every hop, and the II scores for these paths vary greatly. The
path 22 — 62 — 104 is most common; node 62 is one of the repeaters. In several
cases the routing path alternates between repeaters 62 and 68. The node also
routes packets through other repeaters and several other patient sensors. The
longest inferred path is 5 hops.

This example highlights the value of LiveNet in understanding fairly complex
communication dynamics during a real deployment. We were surprised to see
such frequent path changes and so many routing paths in use, even for a single
source-sink pair. This data can help us tune our routing protocol to better handle
mobility and varying link quality.

8.5 Query behavior and yield

The final analysis that we perform involves understanding the causes of data
loss from sources to sinks. We found that the overall data yield during the drill
was very low, with only about 20% of the expected data transmitted by patient
sensors reaching the sink nodes. There are three distinct sources of data loss:
(1) packet loss along routing paths; (2) node failures or reboots, and (3) query
timeouts.

During the drill, most patient nodes ran six simultaneous queries, sending
two types of vital sign data at 1 Hz to each of the three sinks. Each data packet
carries a unique sequence number. The CodeBlue application uses a lease model

query / status
query reply *
route maintenance ¢
Broadcast-storm triggered by abug corrupted packets
£

B8 Path Loss
Delivered

[[] unobserved Loss
[] Query Inactive Los

80
Invalid

104 pee o o o

60

40

H
=
S
]

Percentage of Data Packets (%)

Original Sender Node ID
o
i3

26 20 [-f

n n L L L L L 21 22 23 24 25 26 27 28 29 30
10:39:20 10:39:25 10:39:30 10:39:35 10:39:40 10:39:45 10:39:50 Patient Sensor

Time

Fig. 10. Packet type breakdown for a por- Fig.11. Query yield per node during the
tion of the disaster drill. disaster drill.

for queries, in which the node stops transmitting data after a timeout period
unless the lease is renewed by the sink. Each sink was programmed to re-issue the
query 10 seconds before the lease expires; however, if this query is not received
by the node in time, the query will time out until the sink re-issues the query.

Using the analysis described in Section 4.5, we can disambiguate the causes
of packet loss. Figure 11 shows the results. A query yield of 100% corresponds
to the sink receiving packets at exactly 1 Hz during all times that the node was
alive. As the figure shows, the actual query yield was 17-26%. Using the LiveNet
traces, we can attribute 5-20% loss to dropped packets along routing paths, and
16-25% loss to premature query timeouts. The rest of the loss is unobserved, but
likely corresponds to path loss since these packets should have been transmitted
during query active periods.

This analysis underscores the value of the LiveNet monitoring infrastructure
during the deployment. Without LiveNet, we would have little information to
help us tease apart these different effects, since we could only observe those pack-
ets received at the sinks. With LiveNet, however, we can observe the network’s
operation in much greater detail. In this case, we see that the query timeout
mechanism performed poorly and needs to be made more robust. Also, routing
path loss appears to be fairly high, suggesting the need for better reliability
mechanisms, such as FEC.

9 Future Work and Conclusions

LiveNet provides an infrastructure for monitoring and debugging live sensor net-
work deployments. Rather than introducing possibly intrusive instrumentation
into the sensor application itself, we rely on passive, external packet monitoring
coupled with trace merging and high-level analysis. We have shown that LiveNet
is capable of scaling to a large number of sniffers; that merging is very accurate

with respect to ground truth; that a small number of sniffers are needed to
achieve good trace coverage; and that LiveNet allows one to reconstruct the be-
havior of a sensor network in terms of traffic load, network topology, and routing
paths. We have found LiveNet to be invaluable in understanding the behavior
of the disaster drill deployment, and intend to leverage the system for future
deployments as well.

LiveNet is currently targeted at online data collection with offline post pro-
cessing and analysis. We believe it would be valuable to investigate a somewhat
different model, in which the infrastructure passively monitors network traffic
and alerts an end-user when certain conditions are met. For example, LiveNet
nodes could be seeded with event detectors to trigger on interesting behavior: for
example, routing loops, packet floods, or corrupt packets. To increase scalability
and decrease merge overhead, it may be possible to perform partial merging of
packet traces around windows containing interesting activity. In this way the
LiveNet infrastructure can discard (or perhaps summarize) the majority of the
traffic that is deemed uninteresting.

Such an approach would require decomposing event detection and analysis
code into components that run on individual sniffers and those that run on a
backend server for merging and analysis. For example, it may be possible to
perform merging in a distributed fashion, merging traces pairwise along a tree;
however, this requires that at each level there is enough correspondence between
peer traces to ensure timing correction can be performed. Having an expressive
language for specifying trigger conditions and high-level analyses strikes us as
an interesting area for future work.

Acknowledgments

The authors gratefully acknowledge the contributions of the AID-N team at
Johns Hopkins Applied Physics Laboratory for their assistance with the disas-
ter drill logistics as well as essential hardware and software development: Tia
Gao, Tammara Massey, Dan Greenspan, Alex Alm, Jonathan Sharp, and David
White. Leo Selavo (Univ. Virginia) developed the wireless triage tag used in the
drill. Konrad Lorincz and Victor Shnayder (Harvard) contributed to the Code-
Blue software platform. Geoft Werner-Allen (Harvard) developed the MoteLab
sensor network testbed used for our validation studies.

References

1. N. B. Alberto Cerpa and D. Estrin. Scale: a tool for simple connectivity assessment
in lossy environments. Technical Report CENS TR-~0021, UCLA, September 2003.

2. Y.-C. Cheng, M. Afanasyev, P. Verkaik, P. Benko, J. Chiang, A. C. Snoeren, S. Sav-
age, , and G. M. Voelker. Automating cross-layer diagnosis of enterprise wireless
networks. In ACM SIGCOMM Conference, 2007.

3. Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M. Voelker, and S. Sav-
age. Jigsaw: Solving the puzzle of enterprise 802.11 analysis. In ACM SIGCOMM
Conference, 2006.

10.

11.

12.

13.

14.

15.

16.

17.

B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C. Parkes, J. Shneidman, A. C.
Snoeren, , and A. Vahdat. Mirage: A Microeconomic Resource Allocation System
for SensorNet Testbeds. In Proc. the the Second IEEE Workshop on Embedded
Networked Sensors (EMNETS’05), May 2005.

T. R. F. Fulford-Jones, G.-Y. Wei, and M. Welsh. A portable, low-power, wire-
less two-lead ekg system. In Proc. the 26th IEEE EMBS Annual International
Conference, San Francisco, September 2004.

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable sim-
ulation of entire TinyOS applications. In Proc. the First ACM Conference on
Embedded Networked Sensor Systems (SenSys 2003), November 2003.

K. Lorincz, D. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnay-
der, G. Mainland, S. Moulton, and M. Welsh. Sensor Networks for Emergency
Response: Challenges and Opportunities. IEEE Pervasive Computing, Oct-Dec
2004.

L. Luo, T. He, G. Zhou, L. Gu, T. Abdelzaher, , and J. Stankovic. Achieving
repeatability of asynchronous events in wireless sensor networks with envirolog. In
Proc. IEEE INFOCOM Conference, Barcelona, Spain, April 2006.

R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the mac-level
behavior of wireless networks in the wild. In ACM SIGCOMM Conference, 2006.
T. Massey, T. Gao, M. Welsh, , and J. Sharp. Design of a decentralized elec-
tronic triage system. In Proc. American Medical Informatics Association Annual
Conference (AMIA 2006), Washington, DC, November 2006.

N. Ramanathan, K. Chang, L. Girod, R. Kapur, E. Kohler, and D. Estrin. Sym-
pathy for the sensor network debugger. In SenSys ’05: Proceedings of the 3nd
international conference on Embedded networked sensor systems, 2005.

M. Ringwald, K. Romer, and A. Vitaletti. Passive inspection of sensor networks. In
Proceedings of the 3rd IEEE International Conference on Distributed Computing
in Sensor Systems (DCOSS 2007), Santa Fe, New Mexico, USA, June 2007.

B. rong Chen, G. Peterson, G. Mainland, and M. Welsh. Livenet: Using passive
monitoring to reconstruct sensor network dynamics. Technical Report TR-11-07,
School of Engineering and Applied Sciences, Harvard University, Aug. 2007.

S. Rost and H. Balakrishnan. Memento: A Health Monitoring System for Wireless
Sensor Networks. In IEEE SECON, Reston, VA, September 2006.

B. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable sensor network simulation
with precise timing. In Proc. Fourth International Conference on Information
Processing in Sensor Networks (IPSN’05), April 2005.

G. Tolle and D. Culler. Design of an application-cooperative management system
for wireless sensor networks. In Proc. the 2nd European Confererence on Wireless
Sensor Networks (EWSN 2005), Jan. 2005.

G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A Wireless Sensor
Network Testbed. In Proc. the Fourth International Conference on Information
Processing in Sensor Networks (IPSN’05), April 2005.

