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Abstract

Understanding the behavior of deployed sensor networks is diffi-
cult as they become more sophisticated and larger in scale. Much
of the difficulty comes from the lack of tools to provide a global
view on the network dynamics. This paper describes LiveNet, a
set of tools and techniques for reconstructing complex dynamics of
live sensor network deployments. LiveNet is based on the use of
passive sniffers co-deployed with the network. We address several
challenges: merging multiple sniffer traces, determining coverage
of sniffers, inference of missing information for path reconstruction
and high-level analyses with application-specific knowledge. To val-
idate LiveNet’s accuracy, we conduct controlled experiments on an
indoor testbed. Finally, we present data from a real deployment us-
ing LiveNet. The results show that LiveNet is able to to reconstruct
network topology, bandwidth usage, routing paths, identify hot-spot
nodes, and disambiguate failures observed at application level with-
out instrumenting application code.

1 Introduction

As sensor networks become more sophisticated and larger in
scale, better tools are needed to study their behavior in live
deployment settings. Understanding the complexities of net-
work dynamics, such as the ability of a routing protocol to
react to node failure, or an application’s reaction to vary-
ing external stimuli, is currently very challenging. Simula-
tors [7, 15] and testbeds [17, 3] offer the opportunity to un-
derstand sensor applications in controlled settings. However,
no good tools exist to observe and monitor a sensor network
deployment in situ.

In many cases, it is difficult or impossible to add new in-
strumentation into a deployed sensor network. Depending
on the circumstances, reprogramming nodes may be impos-
sible or inadvisable (for example, due to downtime or risk of
breaking an existing system). Also, adding debugging code
adds overhead and consumes memory, CPU, and network re-
sources. Additionally, the instrumentation code itself may
alter the behavior of the deployed network in subtle ways.
Using a wired backchannel (as is commonly used in testbeds)
is not possible in deployments where nodes may be mobile or
located in remote environments.

In this paper, we describe LiveNet, a set of tools and tech-
niques for recording and reconstructing the complex dynam-
ics of live sensor network deployments. LiveNet is based on
the use of passive monitoring of radio packets observed from
one or more sniffers co-deployed with the network. Sniffer
nodes can be either temporary or permanent, fixed or mobile,
and wired or untethered. Sniffers record traces of all packet

activity observed on the radio channel. Traces from multi-
ple sniffers are merged into a single trace to provide a global
picture of the network’s behavior. The merged trace is then
subject to a series of analyses to study application behavior,
data rates, network topology, and routing protocol dynamics.

Using passive monitoring to understand a sensor network’s
behavior raises a number of unique challenges. First, we are
concerned with the coverage of the LiveNet sniffer infrastruc-
ture in terms of total number of packets observed by the sys-
tem. Second, the merging process can be affected by incom-
plete packet traces and lack of time synchronization across
sniffers. We make use of an approach similar to Jigsaw [2]
and Wit [9] to merge multiple traces, with modifications spe-
cific to the use of 802.15.4 networks. Third, understanding
global network behavior requires extracting aggregate infor-
mation from the detailed traces. We describe a series of anal-
yses, including a novel path inference algorithm that derives
routing paths based on incomplete packet traces.

We evaluate the use of LiveNet in the context of a sensor
network for monitoring patient vital signs in disaster response
settings. We deployed LiveNet during a live disaster drill un-
dertaken in August 2006 in which 10 patients were monitored
and triaged following a simulated bus accident. During the
deployment, the network experienced highly variable perfor-
mance due to node mobility and a bug (only discovered using
the LiveNet traces) causing massive packet flooding. We also
perform an extensive validation of LiveNet using measure-
ments on an indoor sensor network testbed.

Our results show that deploying a LiveNet infrastructure
along with an existing sensor network can yield a great deal
of valuable information on the network’s behavior without
requiring additional instrumentation or changes to the sensor
network code. Our packet merging process and trace analyses
yield an accurate picture of the network’s operation. Finally,
we show that our path inference algorithm correctly deter-
mines the routing path used without explicit information from
the routing protocol stack itself.

The rest of this paper is organized as follows. In Section 2,
we provide motivation and background for the LiveNet ap-
proach, and discuss related work. Section 3 describes the
LiveNet architecture, and Section 4 discusses a range of high-
level analyses that can be performed on the merged sniffer
traces. Implementation details are given in Section 5, and
we give an overview of the disaster drill deployment in Sec-
tion 6. In Section 7 we validate the use of LiveNet on an
indoor testbed in a controlled setting, and in Section 8 we
evaluate the use of LiveNet on the disaster drill dataset. Fi-
nally, Section 9 discusses future work and concludes.



2 Background and Motivation

Sensor networks are becoming increasingly complex, and
correct behavior often involves subtle interactions between
the link layer, routing protocol, and application logic.
Achieving a deep understanding of network dynamics is ex-
tremely challenging for real sensor network deployments. It
is often important to study a sensor deployment in sifu, that
is, in its “natural” setting (rather than as part of a testbed or
simulation), as well as in situations where it is impossible or
undesirable to add additional instrumentation. These require-
ments suggest the need for passive and external observation
of sensor network behavior, and is the goal of our work.

The most common approach to sensor network develop-
ment is simulation [7, 14, 15], which provides an easy means
for instrumenting code and observing the global behavior of
the (simulated) application. However, the behavior of a de-
ployed network may vary substantially from simulation re-
sults. Although simulation is an invaluable development and
debugging tool, no simulator can perfectly capture the envi-
ronment, radio channel characteristics, variations in hardware
calibration, and other effects that are so vexing for real world
deployments.

Sensor network testbeds [3, 17, 5, 18] provide a more re-
alistic debugging environment. However, testbeds are gen-
erally deployed in controlled settings (such as office build-
ings or laboratories) and make use of wired backchannels for
powering, programming, and communicating with individual
nodes. In fielded sensor networks, however, such an approach
is clearly impractical. This problem is compounded in appli-
cations involving mobile sensor nodes.

Sensor network debugging tools: Several previous sys-
tems focus on monitoring and debugging live sensor deploy-
ments. Sympathy [10] is a system for reasoning about sensor
node failures using information collected at sink nodes in the
network. Sympathy has two fundamental limitations that we
believe limit its applicability. First, Sympathy requires that
the sensor node software be instrumented to transmit peri-
odic metrics back to the sink node. In many cases, it is often
impossible or undesirable to introduce additional instrumen-
tation into a live deployment. It may not be possible to repro-
gram sensor nodes following a deployment (especially if the
nodes are closed or provided by a third party), and instrumen-
tation can change the behavior of the network in subtle ways.
Second, Sympathy is limited to observe network state at sink
nodes which may be multiple routing hops from the sensor
nodes in question. As a result, errant behavior deep in the
routing tree may not be observed by the sink. We believe that
LiveNet could be used in conjunction with a tool like Sympa-
thy to yield more complete information on network state.

SNMS [16] and Memento [13] are two management tools
designed for inspecting state in live sensor networks. They
perform functions such as neighborhood tracking, failure de-
tection, and reporting inconsistent routing state. Like Sympa-
thy, these systems involve adding code to the sensor network
application. Both systems attempt to minimize the amount
of information they transmit to limit bandwidth and energy
consumption. EnviroLog [8] is a logging tool that is com-
piled into sensor network applications. It records function

call traces to the node’s flash. After deployment, EnviroLog
can replay the call trace to replicate node behavior.

Passive monitoring tools: LiveNet provides a framework
that permits passive monitoring of a sensor network in situ,
based on the use of one or more sniffer nodes that capture
packets transmitted by sensor nodes for later analysis. Our
approach is inspired by recent work on passive monitoring
for 802.11 networks, namely Jigsaw [2] and Wit [9]. In those
systems, multiple sniffer nodes collect packet traces, which
are then merged into a single trace representing the network’s
global behavior. A series of analyses can then be performed
on the global trace, for example, understanding the behavior
of the 802.11 CSMA algorithm under varying loads, or per-
formance artifacts due to cochannel interference.

Several other papers have leveraged passive monitoring for
studying 802.11 networks. Jigsaw and Wit build upon earlier
work by Yeo et al. [19] for trace merging. Jardosh et al. [6]
and Rodrig et al. [12] describe trace-based analysis of 802.11
behavior in congested settings.

Passive monitoring requires that we merge traces from
multiple sniffers into a single trace, which is made difficult
by varying packet loss between nodes and sniffers as well
as the lack of a global timebase. The key idea is to iden-
tify unique packets in each trace and first time-correct traces
to determine their correspondence. Although LiveNet uses a
similar trace merging approach to Jigsaw and Wit (described
in Section 3.2), leveraging this approach for sensor networks
raises new challenges not seen in typical 802.11 settings.

The first challenge is dealing with heterogeneity in the
sniffer infrastructure. One example is that that each snif-
fer might record slightly different information for the same
packet transmitted over the radio: for example, the MicaZ
and TMote Sky nodes use different packet formats when re-
laying information to their serial port.

Another set of challenges involves understanding the net-
work’s global operation from a set of passively acquired
packet traces, with no additional instrumentation. Since sen-
sor networks generally involve multihop communication, this
task is more difficult than in 802.11 networks with single-hop
communication between clients and access points. For ex-
ample, Jigsaw and Wit focus on link-layer and client-to-AP
traffic, while we are concerned with network-wide dynamics.

We must also be concerned with the coverage of the moni-
toring infrastructure, and whether there are any “blind spots”
caused by poorly-placed sniffers or packet loss due to in-
terference, which may lead to drawing incorrect conclusions
about the network’s operation. In Section 4.4 we describe our
algorithm for reconstructing routing paths from this incom-
plete information.

The most similar approach to LiveNet is SNIF [11], which
is also based on passive monitoring. However, SNIF focuses
on interactive debugging and transient failure detection, while
LiveNet aims to reconstruct sensor network behavior over
longer periods of operation. Few published details are avail-
able on SNIF at the time of writing, so it is unclear what
approach the system uses for merging and analyzing packet
traces. We believe that the SNIF and LiveNet approaches
complement each other as our goals appear to be fairly dis-
tinct.
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Figure 1: Overview of the LiveNet architecture.

3 LiveNet Architecture

LiveNet consists of three main components: a sniffer infras-
tructure for passive monitoring and logging of radio pack-
ets; a merging process that normalizes multiple sniffer logs
and combines them into a single trace; and a set of analyses
that make use of the combined trace. While packet capture
is performed in real time, merging and analysis of the traces
is performed offline due to high storage and computational
requirements. While providing real-time analysis of traffic
captured by LiveNet would be useful in certain situations, we
believe that offline trace merging and analysis meets many of
the needs of users wishing to debug and analyze a network
deployment.

3.1 Sniffer infrastructure

The core of the LiveNet infrastructure is a set of passive net-
work sniffers that capture packets and log them for later anal-
ysis. Conceptually the sniffer is very simple, consisting of a
sensor node either logging packets to local flash or over its
serial port to an attached host. However, certain factors must
be taken into account to achieve the desired level of fidelity
in the recorded packet trace.

First of all, sniffers must timestamp packets as they are
received by the radio, to facilitate later timing-based analy-
sis as well as merging of traces. This timestamping can be
performed at different levels depending on the desired degree
of accuracy. Stamping packets as they are received by the
mote’s radio stack offers the lowest latency between packet
reception and timestamp capture. Timestamping as the packet
is received by the sniffer application may suffer delays due
to packet processing (e.g., posting the packet receive task in
TinyOS). Timestamping at the host attached to the sniffer, if
any, involves the highest latency as packets must be trans-
ferred over the serial port prior to stamping.

Our prototype uses hardware timers provided by the CPU
(as appropriate for each mote platform) to timestamp packets
in the ReceiveMsg.receive() interface; on the MSP430 this is
a 32 kHz timer. Hooking into the CC2420 radio stack would

offer lower latency for timestamping, however, none of the
analyses that we perform required this higher degree of accu-
racy.

We assume that all sensor nodes are sharing the same ra-
dio channel and that sniffers are tuned to the same channel as
the network. In cases where frequency hopping is used, snif-
fers need to scan multiple channels or match the frequency-
hopping schedule of the sensor nodes. However, frequency
hopping is not common in 802.15.4-based sensor networks
deployed to date.

In our current prototype, each received radio packet is
wrapped in an envelope and enqueued for transmission over
the mote’s serial port. The envelope contains the timestamp,
ID of the sniffer node, and original radio packet contents.
A host attached to the mote is responsible for logging the
packet. This host could be a laptop or PC, or a USB-to-
Ethernet bridge such as the TMote Connect. The host logs
each packet in a raw format as it is received over the serial
port to a file or database.

Deployment scenarios: We envision a range of deploy-
ment options for LiveNet sniffers. Sniffers can be installed
either temporarily, during initial deployment and debugging,
or permanently, in order to provide an unobtrusive monitoring
framework. Temporary sniffers could log packets to flash for
manual retrieval, while permanent sniffers would typically re-
quire a backchannel for delivering packet logs. Another sce-
nario might involve one or more mobile sniffers, each carried
by an individual around the sensor network deployment site.
This would be particularly useful for capturing packets to de-
bug a performance problem without disturbing the network
configuration.

3.2 Merging process

Given a set of sniffer traces {S1...S;}, a core problem is
how to combine these traces into a temporally-ordered log
that represents the union of the packets observed by each snif-
fer, offering a global view of network activity.

Several challenges arise when merging multiple sniffer
traces. First, each trace will contain only a subset of the over-
all set of packets received, so it is important to interleave mul-
tiple traces while preserving the correct packet order. Sec-
ond, we do not assume that sniffers are time synchronized, so
two sniffers logging the same packet will use different times-
tamps. Therefore, we must first normalize the timebase used
across each trace, in effect performing post hoc time syn-
chronization. Third, link-level retransmission of a packet can
cause multiple copies of the same packet contents to appear
in each sniffer trace, making it difficult to disambiguate indi-
vidual packet transmissions from each other.

Our approach to trace merging is inspired by Jigsaw [2]
and Wit [9], which perform merging of multiple 802.11
packet traces. Although there are similarities between these
systems and LiveNet, as described in Section 2, there are im-
portant differences owing to the nature of sensor networks,
in particular multihop traffic. We briefly describe the process
here, referring the reader to [2, 9] for additional background.



3.2.1 Timing normalization

The first step is to time correct each of the sniffer traces so
that a unique packet logged in multiple traces will have a
(near) identical timestamp. We choose an arbitrary sniffer
trace Sy as a timebase reference and map packets in all other
traces to this timebase. Let t; represent the timestamp asso-
ciated with packet p logged in trace .S;. Our goal is to assign
a timestamp ¢’ such that £/ ~ t? (assuming that p was logged
in sniffer trace Sp). Note that due to slight timing jitter be-
tween sniffers, even after time correction, not all instances of
p logged in all traces will have an identical corrected times-
tamp ¢},

To accomplish this, we calculate a time mapping A; such
that ¢ = 9 + A,. The time mapping represents a constant
time offset between packets logged in Sy and S;. This ac-
counts for a constant time shift between two sniffers. Rather
than directly account for clock skew, we partition the sniffer
trace into multiple infervals and compute A; separately for
each interval. The duration of the interval is selected so that
any accumulated clock skew will not introduce large errors in
the corrected timestamps; we set the interval length to 1 hour
in our prototype.

In the case where sniffers Sy and S; both log the same
packet p, computing the time mapping A; is straightforward:
A; = t! — 9. However, depending on the physical place-
ment of sniffers, it is likely that S; and Sy may not overhear
any packets in common. In general, we compute the time
mapping using a time offset graph G(V, E') where each ver-
tex in V represents a sniffer, and edges in E represent the
time offset between two sniffers that log at least one packet
p in common. The weight of each edge E(S;,S;) = A; ;.
The time offset A; = A, ¢ is computed by taking the shortest
weighted path in the time graph from S; to Sp.

The time mapping algorithm proceeds as follows. Each
trace is scanned one packet at a time and a hash of the con-
tents of the packet h(p) is computed. We record the tuple
(Si,t}) in a hashtable with key h(p). If the same packet is
recorded in multiple traces, these entries will match the same
hash bucket. When this occurs, we add two edges to the time
graph with weights A; ; and A;; respectively. If A; or A;
are unknown, we test for a shortest path to Sy in the time
graph to compute the missing value. The algorithm termi-
nates when either A; has been computed for all sniffers 4, or
all packets from all sniffer logs have been read. It is possible
that after this process we cannot compute A, for certain snif-
fers, at which point those sniffers are excluded from further
analysis.

To avoid ambiguity in computing the time mapping, we
only consider unique packets p in the sniffer traces, that is,
packets that will not be logged multiple times by the same
sniffer with multiple timestamps. For example, when us-
ing link-layer ARQ, a packet might be transmitted multi-
ple times with an identical payload, leading to an ambigu-
ity about which instances of p correspond to each other in
different sniffer traces. For timebase construction, we only
consider packets that are expected to be unique in a given
sniffer trace: for example, any packet with a unique sequence
number assigned by the transmitting node. Rollover in the se-

quence numbers (for example, if only an 8-bit sequence num-
ber field is used) is easily handled by first pre-scanning the
sniffer traces and assigning a pseudo-sequence number that
will not roll over (e.g., using a 64-bit value).

3.2.2 Progressive trace merging

The second step is to merge the sniffer traces and write out a
single combined trace. Because individual traces can be very
large, it is impractical to read each trace into memory, per-
form a merge, and write out the result. For example, traces
from the disaster drill deployment (described in Section 8)
were up to 37 MB in size for a log covering less than 90 min-
utes of trace data. This requires that we perform a progressive
merging of individual traces, writing out the merged results
on the fly.

Our algorithm operates by alternating between two phases:
scanning and emitting. In the scanning phase, we scan pack-
ets from each trace S;. The packet contents are read and
the time mapping A; applied to each packet. Packets are in-
serted into a priority queue sorted by timestamp. If a packet
with identical contents (as determined by the hash function
h(p)) is already in the priority queue, it is merged into a
single packet, retaining information about the set of traces
in which the packet was identified and the maximum time
spread At = maxys, s, (||t} — tJ]|) between any two in-
stances of the packet in the priority queue. We continue scan-
ning packets from the same source S; until f; is greater than
or equal to the highest timestamp of packets already in the
priority queue.

Once we have scanned all traces {S; ... Sk} in this man-
ner, we begin an emitting phase. We iterate over the prior-
ity queue (ordered by the time-corrected timestamp) and emit
each packet p into the merged trace. (Recall that p may have
been merged with identical packets from other traces during
the scanning phase.) The emitting phase continues until one
of two conditions occurs: (1) The packet p popped from the
priority queue has a time offset of o sec greater than the pre-
viously emitted packet, or (2) The length of the priority queue
(time offset between the first and last packet) is less than
n sec. In the former case, we withhold emitting the packet,
place it back on the priority queue and, return to the scanning
phase. The idea is that if there is a gap in the emitted packet
stream, it may be necessary to scan more packets in order to
fill in the gap. In the latter case, we want to keep the priority
queue populated with enough packets to ensure that merging
will be successful across traces. If we have completed scan-
ning all traces then we do not require this latter condition to
hold.

Because the merging process operates in a progressive
fashion, there is some chance that a packet p will be “pre-
maturely” emitted, that is, before all matching copies of p
across all traces have been scanned. This will lead to a du-
plicate of p in the merged trace. In general, it is impossible
for us to ensure that we scan all copies of a packet before
emitting, unless we read all traces into memory before emit-
ting (effectively setting 7 = o0). In our implementation, we
use 0 = 7) = 10 sec in order to bound memory usage. Re-
moval of duplicates is easily corrected by running the merge
a second time on the merged trace itself, which will cause any



duplicates to be merged together. In practice we find that our
choice of parameters results in very few duplicate packets.

3.2.3 Handling duplicate transmissions

As stated earlier, multiple transmissions of the same packet
(say, due to link-layer ARQ) will cause several copies of the
same packet to appear in the sniffer traces, and complicates
the merging process. Denote dups;(p) as the number of du-
plicates of packet p seen in trace S;. For example, consider
traces 57 with dups; (p) = 4 and Sy with dups,(p) = 2. The
question is how many copies of p should appear in the merged
trace S7 U .Ss.

Without any other information to uniquely identify the
multiple copies of p, we opt to adhere to the lower bound,
d* = maz;(dups;(p)). We know that ar least this many
copies of p were transmitted, so this is a conservative esti-
mate. Taking the upper bound, ). dups,(p), assumes that
there is no overlap in the copies of p observed across traces.
Our merging process combines all copies of p seen in the in-
put traces and attaches the value of d* to the packet in the
merged trace.

Two pieces of information could be used to improve
this estimate. The TinyOS CC2420 radio stack includes
the tos_dsn field in each packet, which is incremented
for each individual packet transmission. Taking d’ =
max(tos_dsn,) — min(tos_dsn,) improves upon our lower
bound. Unfortunately, the MicaZ implementation of the
TinyOS serial stack rewrites packets into an older format that
does not include this field, so this information is not available
when using a MicaZ as a sniffer.! One can also improve the
estimate of d* by estimating the overlap between two sniffers
S1 and Ss based on the fraction of matching (unique) packets
in both traces. We leave exploration of these ideas to future
work.

4 Trace Analysis

A wide range of analyses can be performed on the merged
LiveNet packet trace. In this section, we describe a range
of analysis algorithms for reconstructing a sensor network’s
behavior. Several of these algorithms are generic and can be
applied to essentially any type of traffic, while other analyses
use application-specific knowledge.

4.1 Coverage analysis

The most basic analysis algorithm attempts to estimate the
coverage of the LiveNet sniffer infrastructure, by computing
the fraction of packets actually transmitted by the network
that were captured in the merged packet trace. Coverage can
also be computed on a per-sniffer basis, which is useful for
determining whether a given sniffer is well-placed.

Let us define C;(n) as the coverage of sniffer S; for pack-
ets transmitted by node n. Over a representative time interval

! Although this could be fixed in the TinyOS code, our sniffer traces from
the live disaster drill used the original MicaZ serial stack and therefore are
lacking the tos_dsn field.

t, we can compute

Ci(n) = >~ packets from n received by S;

> packets transmitted by n

Likewise, C'(n) can be computed for the merged trace U;S;.
This calculation requires an estimate of the number of packets
actually transmitted by each node n during the time interval.
This information can be determined in several ways: for ex-
ample, using packet-level sequence numbers, or knowledge
of the application transmission behavior (e.g., if the applica-
tion transmits a periodic beacon packet).

This analysis assumes that packet loss from nodes n to
sniffers .S; is uniform and does not depend on the contents
of the packets. Note that this assumption might not be valid,
for example, if longer packets are more likely to experience
interference or path loss.

4.2 Opverall traffic rate and hotspot analysis

Another basic analysis is to compute the overall amount of
traffic generated by each node in the network, as well as to
determine “hotspots” based on which nodes appear to be the
source of, or destination of, more packets than others. Given
the merged trace, we can start by counting the total number
of packets originating from or destined to a given node n. Be-
cause LiveNet may not observe all actual transmissions, we
would like to infer the existence of other packets. For exam-
ple, if each transmission carries a unique sequence number
we can infer missing packets by looking for gaps in the se-
quence number space. Coupled with topology inference (Sec-
tion 4.3), one can also determine which nodes were likely to
have received broadcast packets, which do not indicate their
destination explicitly.

4.3 Network connectivity

Reconstructing radio connectivity between nodes is seem-
ingly straightforward: for each packet from node a to b, we
record an edge a — b in the connectivity graph. How-
ever, this approach may not reconstruct the complete topol-
ogy, since two nodes a and b within radio range may choose
not to communicate directly, depending on the routing pro-
tocol in use. We make use of two approaches. First, if one
assumes that connectivity is symmetric, an edge b — a can
be recorded alongside a — b. Although asymmetric links are
common in sensor networks [1], our goal is only to establish
whether two nodes are potential neighbors.

The second method is to inspect routing control pack-
ets. For example, several routing protocols, such as TinyOS’
MultihopLQI, periodically transmit their neighbor table
containing information on which nodes are considered neigh-
bors, sometimes along with link quality estimates. These
packets can be used to reconstruct the network connectivity
from the sniffer traces. Note that this information is generally
not available to a base station, which would only overhear
control packets within a single radio hop.

4.4 Routing path inference

One of the more interesting analyses involves reconstructing
the routing path taken by a packet traveling from a source
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Figure 2: Path inference example.

node s to a destination d. The simplest case involves proto-
cols that use source-path routing, in which case the complete
routing path is contained within the first transmission of a
packet from the originating node.

In most sensor network routing protocols, however, the
routing state must be inferred by observing packet transmis-
sions as packets travel from source to destination. However,
because the merged packet trace may not contain every rout-
ing hop, there is some ambiguity in the routing path that is
actually taken by a message. In addition, the routing path
may evolve over time. As a worst case, we assume that
the route can change between any two subsequent transmis-
sions from the source node s. Our goal of our path infer-
ence algorithm is to determine the most probable routing path
P(s,d,t) = (s,n1,n2,...nk, d) at a given time ¢ based on a
possibly incomplete trace.

We begin by quantizing time into fixed-sized windows; in
our implementation the window size is set to 1 sec. For each
possible routing hop @ — b, we maintain a score II(a, b, t)
that represents the likelihood of the hop being part of the
routing path during the window containing ¢. II(a,b,t) is
calculated using two values for each link: a positive score
I (a,b,t) and a negative score 11~ (a,b,t). The positive
score represents any positive information that a link may be
present in the routing path, based on an observation (possibly
at a time in the past or future) that a message was transmitted
from a to b. The negative score represents negative infor-
mation for links that are excluded from the routing path due
to the presence of other, conflicting links, as described below.
The probability of a link being part of the routing path is com-
puted as a combination of the positive and negative scores, as
described below.

Figure 2 shows our algorithm at work on a simple exam-
ple. We begin by initializing I (a, b,t) = I~ (a,b,t) = 0
for all values of a, b, and . The merged packet trace is

scanned, and for each packet transmission from a to b, we
set [T (a, b,t) = 1. For each conflicting link ' — 1/, we set
I~ (a’,b',t) = —1. A link conflicts with @ — b if it shares
one endpoint in common (i.e., a = a’ orb = V'); b — a is
conflicted by definition as well.

Once the scan is complete, we have a sparse matrix rep-
resenting the values of II™ and II~ that correspond to ob-
served packet transmissions. However, there are potentially
many gaps in the packet trace and we must assign values for
the positive and negative scores for times when no transmis-
sion on a link is observed. Our approach is to time dilate the
scores, in effect assigning “degraded” scores to those times
before and after each observation.

Given a time ¢ for which no value has been assigned for
I (a, b, t), we look for the previous and next time windows
ty =1+ 05 and t, =t — &, that have concrete observations
II*(a,b,ty) =" (a, b, ty) = 1. We then set:

0" (a,b,t) max(max(0, 1" (a, b, tf) — s+ 65),

max(0, 1T (a, b, ;) — s+ &)

That is, we take the maximum value of TIT time-dilated back-
wards from ¢ or forwards from ¢;, capping the value to > 0.
Here, s is a scaling constant that determines how quickly the
score degrades per unit time. Similarly, we fill in values for
missing IT~ (a, b, t) values, also capping them to be < 0. In
our implementation we set s = 0.1.

Once we have filled in all cells of the matrix for all links
and all time windows, the next step is to compute the final
link score II(a, b, t):

) if It (a,b,t) > [T (a,b,t)|

I (a,b,t
~(a,b,t) otherwise

II(a,b,t) =

@h={ 1
That is, the score is assigned to either the positive or neg-
ative score, depending on which has the greater absolute



value. Note that for links for which we have no information,
I(a,b,t) = 0.

We now have a complete matrix representing the score for
each link at each time window. The final step is to compute
the most likely routing path at each moment in time. For this,
we take the acyclic path that has the highest average score
over the route, namely:

El:{nl,nQ}EP(s,d,t) H(n17 n2, t)
[P(s,d, )]

P*(s,d,t) = arg vzg(ljizi,t)
The choice of this metric has several implications. First, links
for which we have no information (II(a,b,%) = 0) dimin-
ish the average score over the path. Therefore, all else be-
ing equal, our algorithm will prefer shorter paths over longer
ones. For example, consider a linear path with a “gap” be-
tween two nodes for which no observation is ever made:
(s,n1,...7...,n2,d). In this case, our algorithm will fill in
the gap with the direct hop ny — nq since that choice max-
imizes the average score over any other path with more than
one hop bridging the gap.

Second, note that the most likely path P* may not be
unique; it is possible that many routes exist with the same av-
erage score. In this case, we can use network connectivity in-
formation (Section 4.3) to exclude links that are not likely to
exist in the route. However, we cannot guarantee that this al-
gorithm always converges on a unique solution for each time
window.

S Implementation

Our implementation of Livenet consists of three components:
the sniffer infrastructure, trace merging code, and analysis al-
gorithms. The sniffers are implemented as a modified ver-
sion of the TinyOS TOSBase application, with two impor-
tant changes. First, the code is modified to pass every packet
received over the radio to the serial port, regardless of desti-
nation address or AM group ID. Second, the sniffer takes a
local timestamp (using the SysTime.getTime32 () call)
on each packet reception, and prepends the timestamp to the
packet header before passing it to the serial port.

We observed various issues with this design that have not
yet been resolved. First, it appears that TMote Sky motes
have a problem streaming data at high rates to the serial port,
causing packets to be dropped by the sniffer. In our LiveNet
deployment described below, a laptop connected to both a Mi-
caZ and a TMote Sky sniffer recorded more than three times
as many packets from the MicaZ. This is possibly a problem
with the MSP430 UART driver in TinyOS. Second, our de-
sign only records packets received by the Active Messages
layer in TinyOS. Ideally, we would like to observe control
packets, such as acknowledgments, as well as packets that do
not pass the AM layer CRC check.

Our merging and analysis tools are implemented in
Python, using a Python back-end to the TinyOS mig tool to
generate appropriate classes for parsing the raw packet data.
The merging code is 657 lines of code (including all com-
ments). The various analysis tools comprise 3662 lines of
code in total. A separate library (131 lines of code) is used

Figure 3: The indoor treatment area of the disaster drill. Faces
are blurred to preserve anonymity. Inset shows the electronic triage
tag, consisting of an MSP430 processor, CC2420 radio, status
LEDs, display, and pulse oximeter for measuring patient vital signs.

for parsing and managing packet traces, which is shared by
all of the merging and analysis tools.

6 Deployment Study: Disaster Drill

To evaluate LiveNet in a realistic application setting, we de-
ployed the system as part of a live disaster drill that took place
in August 2006.2 Disaster response and emergency medicine
offer an exciting opportunity for use of wireless sensor net-
works in a highly dynamic and time-critical environment.

The disaster drill modeled a simulated bus accident in
which twenty volunteer “victims” were triaged and treated
on the scene by 13 medics and firefighters participating in
the drill. Each patient was outfitted with one or more sensor
nodes to monitor vital signs, which formed an ad hoc net-
work, relaying real-time data back to a laptop base station
located at the incident command post nearby. The laptop dis-
played the triage status and vital signs for each patient, and
logged all received data to a file. The incident commander
could rapidly observe whether a given patient required im-
mediate attention, as well as update the status of each patient,
for example, by setting the triage status from “moderate” to
“severe.”

The network consisted of two types of sensor nodes: an
electronic triage tag and a electrocardiograph (ECG). The
triage tag incorporates a pulse oximeter (monitoring heart rate
and blood oxygen saturation using a small sensor attached
to the patient’s finger), an LCD display for displaying vital
signs, and multiple LEDs for indicating the patient’s triage
status (green, yellow, or red, depending on the patient’s sever-
ity). The triage tags are based on the MicaZ mote with a cus-
tom daughterboard and case, as shown in Figure 3. The ECG
node consists of a TMote Sky with a custom sensor board pro-
viding a two-lead (single-channel) electrocardiograph signal

2 Anonymity rules for double-blind review prevent us from providing
complete details on the deployment and software used.



that is digitized by the mote for transmission over the radio.
In addition to the patient sensor nodes, a number of static
repeater nodes were deployed to assist with maintaining net-
work connectivity.

The sensor nodes all ran a custom application, imple-
mented in TinyOS, that includes a specialized ad hoc rout-
ing protocol, a sensor discovery protocol, and a high-level
query interface. The routing protocol forms a spanning tree
rooted at the base station. Although its design is similar to ex-
isting protocols such as MultihopLQI, our protocol includes
a number of enhancements to improve reliability, including
application-layer acknowledgments, a well-tuned route selec-
tion algorithm, and careful buffer management. Because sen-
sor nodes in the disaster drill are highly mobile, the protocol
adapts quickly to changes in the network topology.

The sensor discovery protocol allows sensor nodes and the
base station to discover other nodes in the network and learn
of their capabilities. It is based on a simple periodic network
flood in which each node transmits its node ID and attached
sensor types. The query interface provides a mechanism for
injecting queries into the network that specify a node ID, sen-
sor type, sampling rate, expiry time, and optional trigger pa-
rameters (for example, whether data should be transmitted
only when vital signs fall outside of a given range).

Our goal in deploying LiveNet was to capture detailed data
on the operation of the network as nodes were activated, pa-
tients moved from the triage to treatment areas, and study the
scalability and robustness of our ad hoc networking proto-
cols. In this situation, it would have been impossible to record
complete packet traces from each sensor node directly, moti-
vating the need for a passive monitoring infrastructure. We
made use of 7 separate sniffer nodes attached to 5 laptops
(two of the laptops had two sniffers to improve yield).

Figure 3 shows a picture from the drill to give a sense of
the setup. The drill occurred in three stages. The first stage
occurred in a parking lot area outdoors during which patients
were outfitted with sensors and initial triage performed. In the
second stage, most of the patients were moved to an indoor
treatment area as shown in the picture. In the third stage, two
of the “critical” patients were transported to a nearby hospi-
tal. LiveNet sniffers were placed in all three locations. Our
analysis in this paper focuses on data from 6 sniffers located
at the disaster site.

The drill ran for a total of 53 minutes, during which we
recorded a total of 110548 packets in the merged trace from
a total of 20 nodes (11 patient sensors, 6 repeaters and 3 base
stations).

7 Validation Study

The goal of our validation study is the ascertain the accu-
racy of the LiveNet approach to monitoring and reconstruct-
ing sensor network behavior. For this purpose, we make
use of a well-provisioned indoor testbed, which allows us
to study LiveNet in a controlled setting. The testbed con-
sists of 184 TMote Sky nodes deployed over several floors of
an office building, located mainly on bookshelves in various
offices and labs. During the experiments between 120-130
nodes were active. Each node is connected to a USB-Ethernet
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Figure 4: Sniffer reception rate vs. offered load. Data is shown
Jfor both TMote Sky and MicaZ sniffer nodes.

Num traces | Merge time (sec)
2 301

5 616

10 1418

13 1518

20 2143

25 2859

Figure 5: Merge time as the number of traces varies. Each trace
represents 1000 sec of packet data of 63 nodes transmitting at 4 Hz
each.

bridge for programming and access to the node’s serial port.
For our validation, half of the nodes are used as sniffers and
the other half used to run various applications. Although such
a sniffer ratio is much larger than we would expect in a live
deployment, this allows us to study the effect of varying snif-
fer coverage.

7.1 Sniffer reception rate

The first consideration is how well a single sniffer can cap-
ture packets at varying traffic rates. For these experiments,
we make use of a simple TinyOS application that periodi-
cally transmits packets containing the sending node ID and
a unique sequence number. Figure 4 shows the reception
rate of two sniffers (a MicaZ and a TMote Sky) with up to
4 nodes transmitting at increasing rates. All nodes were lo-
cated within several meters of each other. Note that due to
CSMA backoff, the offered load may be lower than the sum
of the transmitter’s individual packet rates. We determine the
offered load by computing a linear regression on the observed
packet reception times at the sniffer.

As the figure shows, a single sniffer is able to sustain an
offered load of 100 packets/sec, after which reception prob-
ability degrades. Note that the default MAC used in TinyOS
limits packet transmission rate of short packets to 284 pack-
ets/sec. Also, as mentioned in Section 5, MicaZ-based snif-
fers can handle somewhat higher loads than the TMote Sky.
We surmise this to be due to differences in the serial I/O stack
between the two mote platforms.

7.2 Merge performance

Although LiveNet’s sniffer traces are intended for offline
analysis, the performance of the trace merging process is po-
tentially of interest. Figure 5 shows the performance of the
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trace merge for an increasing number of sniffer logs. For this
experiment, half of the testbed nodes transmit packets at a rate
of 4 Hz each, and the other half act as sniffers. Each trace rep-
resents 1000 sec of packet data. Merging was performed on
an otherwise unloaded 2.4 GHz Linux desktop with 1 GB of
memory. Input traces were stored on a remote NFS filesystem
accessed via 100 Mbps Ethernet.

As the figure shows, the “break even” point where merge
time exceeds the length of the trace is between 5 and 10
traces. This suggests that for a modest number of traces, one
could conceivably perform merging in real time, although this
was not one of our design goals. Note that we have made no
attempt to optimize the LiveNet merge code, which is imple-
mented in Python and makes heavy use of ASCII files and
regular expression matching.

7.3 Coverage

The next question is how many sniffers are required to
achieve a given coverage in our testbed. We define cover-
age as the fraction of transmitted packets that are received by
the LiveNet infrastructure. There are 70 sniffer traces in total
for this experiment.

To compute the coverage of a random set of IV traces, the
most thorough, yet computationally demanding, approach is
to take all (%) subsets of traces, merge them, and compute
the resulting coverage. Instead, we choose five random per-
mutations of the traces and successively merge them, adding
one trace at a time to the merge and computing the coverage.
We then take the average of the five coverage values for each
value of . The results are shown in Figure 6.

As the figure shows, the first 17 traces yield the greatest
contribution, achieving a coverage of 84%. After this, ad-
ditional sniffers result in diminishing returns. A coverage of
90% is reached with 27 sniffers, and all 70 sniffers have a cov-
erage of just under 99%. Of course, these results are highly
dependent on the physical extent and placement of our testbed
nodes. The testbed covers 3 floors of a building spanning an
area of 5226m? (56,252 sq ft). Assuming nodes are uniformly
distributed in this area (which is not the case), this suggests
that approximately one sniffer per 193m? (2077 sq ft) would
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Figure 7: Network topology reconstruction. This figure shows
the derived network topology from three sources: (a) unicast trans-
missions along a spanning tree; (b) extracted neighbor sets from
routing protocol beacon messages; and (c) an offline connectivity
measurement. Each point represents a single (sender, receiver) pair.
As the data shows, there is good correspondance between the bea-
con messages and offline connectivity data, and very few links are
discovered by observing unicast transmissions alone.

#links || Offline Beacons Unicasts
Offline 835 - 777 (93%) | 134 (16%)
Beacons | 799 777 (97%) | - 134 (17%)
Unicasts | 146 134 (92%) | 134 (92%) | -

Figure 8: Comparison of topology data sources. Each cell of
this table shows the number of matching links between each of three
information sources: offline connectivity measurement, routing pro-
tocol beacons, and unicast packets.

achieve a coverage of 90%. Keep in mind that sniffer lo-
cations were not planned to maximize coverage, and we are
using the built-in antenna of the TMote Sky. High-gain an-
tennas and careful placement would likely achieve good cov-
erage with fewer nodes.

7.4 Merge accuracy

Next, we are interested in evaluating the accuracy of the
merged trace. As described earlier, our trace merging algo-
rithm operates on fixed-length time windows and could lead
to duplicate or reordered packets in the merged trace. Note
that this can be avoided by reading in each of the input traces
into memory prior to merging, however, the memory require-
ments of this approach are prohibitive. Performing a second
“self-merging” pass on the trace can identify and correct du-
plicate and reordered packets.

After merging all 70 source traces from the previous exper-
iment, we captured a total of 246,532 packets. 2920 packets
are missing from the trace (coverage of 98.8%). There are a
total of 354 duplicate packets (0.14%), and 13 out-of-order
packets (0.005%). We feel confident that these error rates are
low enough to rely on the merged trace for higher-level anal-
yses.

7.5 Topology reconstruction

We are interested in determining how well the LiveNet in-
frastructure can recover the topology of our sensor network
testbed. For this experiment, we run the vital sign monitor-



ing application on half of the testbed nodes and sniffers on
the other half. 10 nodes were selected as patient sensors and
routed data along a spanning tree to a single sink node. There
are 65 total nodes running the sensor application.

We use LiveNet to observe two kinds of packets: unicast
transmissions as packets traverse the spanning tree, and peri-
odic neighbor table beacons used by the application’s routing
protocol. Note that, in general, we expect the neighbor table
beacons to reveal many more links than those traversed by
unicast packets. We compare the LiveNet-derived topology
to data obtained using an offline connectivity measurement,
similar to SCALE [1], in which each node in turn transmits
a series of packets, and all other nodes record the number of
packets received from each source. We consider this data to
be “ground truth.” The connectivity measurement was per-
formed immediately after we completed the LiveNet run.

Figure 7 shows the complete set of links determined us-
ing LiveNet and the offline connectivity measurement. There
are several interesting features of this graph. First, the uni-
cast packets reveal only a small number of links (146 in this
case). Second, network connectivity exhibits a fair degree of
asymmetry. Third, while there are a number of links not ob-
served by LiveNet, there are also links only seen in LiveNet
and not in the connectivity measurement. Figure 8 gives a
breakdown of the number of links from each source of infor-
mation. 22 links are seen only in the routing beacon messages
and not in the “ground truth” data set. We suspect this is due
to poor link quality and the limited number of per-node trans-
missions (10) used by the connectivity measurement.

7.6 Path inference

To test the path inference algorithm described in Section 4.4,
we set up an experiment in which one node routes data to
a given sink node over several multihop paths. The node is
programmed to automatically select a new route to the sink
every 5 minutes. Since we know the routing paths taken in
advance, we can compare the output of the path inference
algorithm to ground truth.

Figure 9 shows the results. The top portion of the fig-
ure shows the routing path determined by the path inference
algorithm. Large points indicate routes that were fully ob-
served by the LiveNet infrastructure, while small points indi-
cate routes containing one or more inferred hops. The lower
portion of the figure shows the corresponding II score for the
chosen path.

The paths inferred by our algorithm correspond to ground
truth in all but a few cases. For example, at times ¢ = 300,
600, 1200, 1500, and 1800, there is an inferred path (with a
relatively low II score) between two observed paths. This is
because LiveNet observes the path switch as it is taking place,
so we briefly infer the existence of an “intermediate” route.
As expected the path switches occur on 5 minute intervals.

8 Deployment evaluation

Finally, we perform an evaluation of the LiveNet traces gath-
ered during the disaster drill described in Section 6.
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8.1 General evaluation

As a general evaluation of the sensor network’s operation dur-
ing the drill, we first present the overall traffic rate and packet
type breakdown in Figure 10 and 11. These high-level analy-
ses help us understand the operation of the deployed network
and can be used to discover performance anomalies that are
not observable from the network sinks.

As Figure 10 shows, at around time ¢t = 10 : 39 there is
a sudden increase in corrupted packets received by LiveNet:
these packets have one or more fields that appear to contain
bogus data. Looking more closely at Figure 11, starting at
this time we see a large number of partially-corrupted routing
protocol control messages being flooded into the network. On
closer inspection, we found that these packets were otherwise
normal spanning-tree maintenance messages that contained
bogus sequence numbers. This caused the duplicate suppres-
sion algorithm in the routing protocol to fail, initiating a per-
petual broadcast storm that lasted for the entire second half of
the drill. The storm also appears to have negatively affected
application data traffic as seen in Figure 10.

We believe the cause to be a bug in the routing proto-
col (that we have since fixed) that only occurs under heavy
load. Note that we had no way of observing this bug with-
out LiveNet, since the base stations would drop these bogus
packets.

8.2 Coverage

To determine sniffer coverage, we make use of periodic status
messages broadcast by each sensor node once every 15 sec.
Each status message contains the node ID, sensor types at-
tached, and a unique sequence number. The sequence num-
bers allow us to identify gaps in the packet traces captured by
LiveNet, assuming that all status messages were in fact trans-
mitted by the node. A node could conceivably fail to transmit
a status message due to excessive CSMA backoff, so the re-
sults here are somewhat conservative.



T
Fully-observed routes @
Routes containing inferences .

121->103->101
121->109->101

121->117->27->119->99->101

121->117->27->101

121->105->109->101

121->105->103->101

121->105->101

121->119->99->101
121->109->117->27->101

1

0.75

0.5

vl

0.25
0

Score

-0.25

-0.5

-0.75

1

300 600 900

1200 1500 1800
Time (seconds)
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Figure 12 shows the coverage broken down by each of the
20 nodes in the disaster drill. There were a total of 4819
expected status messages during the run, and LiveNet cap-
tured 59% overall. We observed 89 duplicate and out-of-
order packets out of 2924 packets in total, for an error rate
of 3%. As the figure shows, the coverage for the fixed re-
peater nodes is generally greater than for the patient sensors;
this is not too surprising as the patients were moving between
different locations during the drill, and several patients were
laying on the ground. The low coverage (26%) for one of the
sink nodes is because this node was located inside an ambu-
lance, far from the rest of the deployment.

8.3 Topology and network hotspots

The network topology during the drill was very chaotic, since
nodes were moving and several nodes experienced reboots.
Visualizing such a complex dataset presents challenges of its
own, but to give an example we show the partial topology
consisting only of observed unicast links in Figure 13. The
full connectivity graph including all neighbor relationships is
too dense to show here. For each link, we evaluate the ETX
metric [4], defined as the mean number of transmissions of a
given packet along each link; our routing protocol uses ARQ

with a maximum retransmission count of 5. This data can be
used to estimate radio link quality.

A few observations can be made from this figure. First,
most nodes use several outbound links, indicating a fair
amount of route adaptation. Keep in mind that there are mul-
tiple routing trees (one rooted at each of the sinks), and node
mobility causes path changes over time. Second, all but two
of the patient sensors have both incoming and outgoing uni-
cast links, indicating that they were used for relaying packets.
We also see one of the sink nodes (node 100) relaying packets
as well.

In order to determine “hotspots” in the network, we look
at the total number of packets transmitted by each node dur-
ing the drill. For several message types (query reply and
status messages), we can also infer the existence of unob-
served packets using sequence numbers; this information is
not available for route maintenance and query messages. Fig-
ure 14 shows the breakdown by node ID and packet type.
Since we are counting all transmissions by a node, these totals
include forwarded packets; this explains the wide variation in
traffic.

The graph reveals a few interesting features. the repeater
nodes generated a larger amount of traffic overall than the
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Figure 12: Per-node coverage during the drill. This graph shows
the coverage of the LiveNet sniffers for each of the 20 nodes in the
disaster drill. Coverage for mobile patient sensors is somewhat

lower than for the fixed repeater nodes. The overall coverage is
58%.

Figure 13: Unicast links observed during the disaster drill. Data
is shown only for the first half of the drill, before all nodes were
moved indoors together. Each edge is labelled with the mean number
of packet transmissions (ETX) along the link. Blue nodes are patient
sensors, red nodes are repeaters, and green nodes are sinks.

patient sensors; this indicates that the repeaters were heav-
ily used, as suggested by the topology shown in Figure 13.
Second, node 62 (a repeater) seems to have a very large num-
ber of inferred (that is, unobserved) query reply packets, far
more than its coverage of 83.6% would predict. This suggests
that the node internally dropped packets that it was forward-
ing for other nodes, possibly due to heavy load. Note that
with the information in the trace, there is no way to disam-
biguate packets unobserved by LiveNet from those dropped
by a node. If we assume that our coverage calculation is cor-
rect, we would infer a total of 4088 packets; instead we infer
a total of 15017. Node 62 may have then dropped as many
as (15017 — 4088) /15017 = 72% of the query replies it was
forwarding. With no further information, the totals in Fig-
ure 14 therefore represent a conservative upper bound on the
total traffic transmitted by the node.
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Figure 14: Inferred per-node packet traffic load during the
drill. This graph shows the number of packets transmitted by each
node during the drill. Both observed traffic and inferred traffic based
on sequence number analysis are shown in the graph.

8.4 Path inference

Given the limited coverage of the LiveNet sniffers during the
drill, we would not expect the path inference algorithm to
provide results as crisp as those in Figure 9. We take as
an example a single patient sensor (node 22) and infer the
routing paths to one of the sink nodes (node 104). The re-
sults are shown in Figure 15. As the figure shows, there are
many inferred paths that lack complete observations of every
hop, and the II scores for these paths vary greatly. The path
22 — 62 — 104 is most common; node 62 is one of the re-
peaters. In several cases the routing path alternates between
repeaters 62 and 68. The node also routes packets through
other repeaters, as well as several other patient sensors. The
longest routing path inferred is 5 hops.

This example highlights the value of LiveNet in under-
standing fairly complex communication dynamics during a
real deployment. We were surprised to see such frequent path
changes and so many routing paths in use, even for a single
source-sink pair. This data can help us tune our routing pro-
tocol to better handle mobility and varying link quality.

8.5 Query behavior and yield

The final analysis that we perform on the disaster drill traces
involves understanding the causes of data loss from sources
to sinks. We found that the overall data yield during the drill
was very low, averaging about 20% across the patient sensors.
There are several possible sources of data loss in our system:
packet loss along routing paths, node failures or reboots, or
query timeout.

During the drill, most patient nodes ran six simultaneous
queries, sending two types of vital sign data at 1 Hz to each
of the three sinks. Each data packet carries a unique sequence
number. Our system uses a lease model for queries, in which
the node stops transmitting data after a timeout period unless
the lease is renewed by the sink. Each sink was programmed
to re-issue the query 10 sec before the lease expires; however,
if this query is not received by the node in time, the query will
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Figure 15: Routing paths for one of the patient sensors during the disaster drill.
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Figure 16: Query behavior. This figure shows the behavior of an
individual query during the drill. The plot labels query reply packets
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figure.

10:19  10:20  10:21

time out until the sink re-issues the query.

Figure 16 shows the behavior of an individual node during
the drill, combining LiveNet traces with an application-level
packet trace collected at the sink node. From this graph we
can infer time periods when queries were active or inactive,
query timeouts, and path loss to the sink (that is, a packet ob-
served by LiveNet but not received at the sink). For example,
for the first 100 sec or so, the node is transmitting packets
but none of them are received by the sink, indicating a bad
routing path.

Using this combined information, we can then break down
the data loss in terms of path loss, inactive query periods
(caused by query timeouts), and unobserved loss; that is,
packets that were neither observed by LiveNet or the sink.
Figure 17 shows the results. A query yield of 100% corre-
sponds to the sink receiving packets at exactly 1 Hz during
all times that the node was alive. As the figure shows, the
actual query yield was 17-26%. Using the LiveNet traces,
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Figure 17: Query yield per node during the disaster drill. The
overall data yield during the drill was quite low. Using the LiveNet
infrastructure, we were able to break down the causes of data loss
in terms of packet loss and query timeout.

we can attribute 5-20% loss to dropped packets along rout-
ing paths, and 16-25% loss to premature query timeouts. The
rest of the loss is unobserved, but likely corresponds to path
loss since these packets should have been transmitted during
query active periods. However, it is also possible that nodes
failed to transmit these packets at all, due to excessive CSMA
backoff.

This analysis underscores the value of the LiveNet mon-
itoring infrastructure during the deployment.  Without
LiveNet, we would have little information to help us tease
apart these different effects, since we could only observe
those packets received at the sinks. With LiveNet, however,
we can observe the network’s operation in much greater de-
tail. In this case, we see that the query timeout mechanism
performed poorly and needs to be made more robust. Also,
routing path loss appears to be fairly high, suggesting the
need for better reliability mechanisms, such as FEC.



9 Future Work and Conclusions

LiveNet is a first step towards an infrastructure for monitoring
and debugging live sensor network deployments. Rather than
introducing possibly intrusive instrumentation into the sensor
application itself, we rely on passive, external packet mon-
itoring coupled with trace merging and high-level analysis.
We have shown that LiveNet is capable of scaling to a large
number of sniffers; that merging is very accurate with respect
to ground truth; that a small number of sniffers are needed to
achieve good trace coverage; and that LiveNet allows one to
reconstruct the behavior of a sensor network in terms of traf-
fic load, network topology, and routing paths. We have found
LiveNet to be invaluable in understanding the behavior of the
disaster drill deployment, and intend to leverage the system
for future deployments as well.

LiveNet is currently targeted at online data collection with
offline post processing and analysis. We believe it would
be valuable to investigate a somewhat different model, in
which the infrastructure passively monitors network traffic
and alerts an end-user when certain conditions are met. For
example, LiveNet nodes could be seeded with event detectors
to trigger on interesting behavior: for example, routing loops,
packet floods, or corrupt packets. To increase scalability and
decrease merge overhead, it may be possible to perform par-
tial merging of packet traces around windows containing in-
teresting activity. In this way the LiveNet infrastructure can
discard (or perhaps summarize) the majority of the traffic that
is deemed uninteresting.

Such an approach would require decomposing event de-
tection and analysis code into components that run on in-
dividual sniffers and those that run on a backend server for
merging and analysis. For example, it may be possible to per-
form merging in a distributed fashion, merging traces pair-
wise along a tree; however, this requires that at each level
there is enough correspondence between peer traces to en-
sure timing correction can be performed. Having an expres-
sive language for specifying trigger conditions and high-level
analyses strikes us as an interesting area for future work.

References

[1] N.B. Alberto Cerpa and D. Estrin. Scale: a tool for simple connectivity
assessment in lossy environments. Technical Report CENS TR-0021,
UCLA, September 2003.

[2] Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M. Voelker, and
S. Savage. Jigsaw: Solving the puzzle of enterprise 802.11 analysis. In
ACM SIGCOMM Conference, 2006.

[3] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C. Parkes,
J. Shneidman, A. C. Snoeren, , and A. Vahdat. Mirage: A Microeco-
nomic Resource Allocation System for SensorNet Testbeds. In Proc.
the the Second IEEE Workshop on Embedded Networked Sensors (EM-
NETS’05), May 2005.

[4] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. In Proceedings
of the 9th ACM International Conference on Mobile Computing and
Networking (MobiCom ’03), San Diego, California, September 2003.

[5] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Os-
terweil, and T. Schoellhammer. A system for simulation, emulation,
and deployment of heterogeneous sensor networks. In Proc. Second
ACM Conference on Embedded Networked Sensor Systems (SenSys),
2004.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13

[14]

[15]

[16]

[17]

[18]

[19]

A. Jardosh, K. Ramachandran, K. C. Almeroth, , and E. M. Belding-
Royer. Understanding congestion in ieee 802.11b wireless networks.
In Proc. the Internet Measurement Conference(IMC 2005), 2005.

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scal-
able simulation of entire TinyOS applications. In Proc. the First ACM
Conference on Embedded Networked Sensor Systems (SenSys 2003),
November 2003.

L. Luo, T. He, G. Zhou, L. Gu, T. Abdelzaher, , and J. Stankovic.
Achieving repeatability of asynchronous events in wireless sensor
networks with envirolog. In Proc. IEEE INFOCOM Conference,
Barcelona, Spain, April 2006.

R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the
mac-level behavior of wireless networks in the wild. In ACM SIG-
COMM Conference, 2006.

N. Ramanathan, K. Chang, L. Girod, R. Kapur, E. Kohler, and D. Es-
trin. Sympathy for the sensor network debugger. In SenSys '05: Pro-
ceedings of the 3nd international conference on Embedded networked
sensor systems, 2005.

M. Ringwald, M. Cortesi, K. Romer, and A. Vialetti. Demo abstract:
Passive inspection of deployed sensor networks with snif. In K. Lan-
gendoen and T. Voigt, editors, Adjunct Proceedings of the 4th Euro-
pean Confererence on Wireless Sensor Networks (EWSN 2007), pages
45-46, Delft, The Netherlands, Jan. 2007.

M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and J. Zahorjan.
Measurement-based characterization of 802.11 in a hotspot setting.
In E-WIND °05: Proceeding of the 2005 ACM SIGCOMM workshop
on Experimental approaches to wireless network design and analysis,
pages 5-10, New York, NY, USA, 2005. ACM Press.

S. Rost and H. Balakrishnan. Memento: A Health Monitoring System
for Wireless Sensor Networks. In JEEE SECON, Reston, VA, Septem-
ber 2006.

V. Shnayder, M. Hempstead, B. rong Chen, G. Werner-Allen, and
M. Welsh. Simulating the power consumption of large-scale sensor
network applications. In Proc. the Second ACM Conference on Em-
bedded Networked Sensor Systems (SenSys 2004), November 2004.

B. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable sensor network
simulation with precise timing. In Proc. Fourth International Confer-
ence on Information Processing in Sensor Networks (IPSN’05), April
2005.

G. Tolle and D. Culler. Design of an application-cooperative manage-
ment system for wireless sensor networks. In Proc. the 2nd European
Confererence on Wireless Sensor Networks (EWSN 2005), Jan. 2005.
G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A Wireless
Sensor Network Testbed. In Proc. the Fourth International Conference
on Information Processing in Sensor Networks (IPSN’05), April 2005.
B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental envi-
ronment for distributed systems and networks. In Proc. the 5th OSDI,
2002.

J. Yeo, M. Youssef, and A. Agrawala. A framework for wireless lan

monitoring and its applications. In Proc. ACM Workshop on Wireless
Security (WiSe 2004), 2004.



