
A System Supporting High-Performance Communication and I/O in Java

by

Matt Welsh

B.S. (Cornell University) 1996

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor David Culler, Chair
Professor Eric Brewer

Fall 1999

The thesis of Matt Welsh is approved:

Chair Date

Date

University of California at Berkeley

Fall 1999

A System Supporting High-Performance Communication and I/O in Java

Copyright Fall 1999

by

Matt Welsh

i

Abstract

A System Supporting High-Performance Communication and I/O in Java

by

Matt Welsh

Master of Science in Computer Science

University of California at Berkeley

Professor David Culler, Chair

Implementing efficient communication and I/O mechanisms in Java requires both fast ac-

cess to low-level system resources (such as network and raw disk interfaces) and direct

manipulation of memory regions external to the Java heap (such as communication and

I/O buffers). Java native methods are typically too expensive to perform these operations

and raise serious protection concerns. We present Jaguar, a new mechanism that provides

Java applications with efficient access to system resources while retaining the protection

of the Java environment. This is accomplished through compile-time translation of certain

Java bytecodes to inlined machine code segments.

We demonstrate the use of Jaguar through a Java interface to the VIA commu-

nications layer that achieves nearly identical performance to that of C, and Pre-Serialized

Objects, a mechanism that greatly reduces the cost of Java object serialization. In addition,

we present Tigris, a cluster-based I/O system which allows applications to automatically

balance resource consumption across cluster nodes and achieve high performance even in the

face of resource perturbations. To show the feasibility of building high-performance cluster

applications in Java, we present performance results for TigrisSort, a parallel, disk-to-disk

sorting benchmark which rivals that of previous systems built in C and C++.

ii

iii

‘Thank God I am not a genius —

for a genius has nobody in whom he can confide.’

Lawrence Durrell

iv

Contents

List of Figures v
1 Introduction . 1
2 Motivation and Background . 3

2.1 Related Work . 4
2.2 Are native methods adequate? . 5

3 Jaguar Design and Implementation . 8
3.1 Code mappings . 8
3.2 External Objects . 9
3.3 Implementation . 10
3.4 Discussion . 11

4 JaguarVIA . 12
4.1 The Berkeley VIA architecture . 13
4.2 JaguarVIA Implementation . 14
4.3 JaguarVIA Performance . 18

5 Pre-Serialized Objects . 19
5.1 PSO Implementation . 21
5.2 Limitations . 22
5.3 PSO Performance . 23

6 The Tigris System . 27
6.1 Implementation overview . 29
6.2 Distributed Queue implementation 32
6.3 Initialization and control . 33
6.4 Distributed Queue Performance . 34

7 TigrisSort: A Sample Application . 35
7.1 TigrisSort structure . 36
7.2 TigrisSort performance . 38

8 Issues and Future Work . 39
9 Conclusion . 41

Bibliography 43

v

List of Figures

1 A comparison between Java Native Interface and C overheads. 6
2 Native code and Jaguar compared. 7
3 Berkeley VIA Architecture. 13
4 Source code for the VIA Doorbell class. 16
5 JaguarVIA Code Transformations. 17
6 JaguarVIA performance results. 18
7 An example PSO and its memory layout. 20
8 Pre-Serialized Object microbenchmarks. 23
9 PSO-over-VIA message latency results. 24
10 PSO File-scan benchmarks. 26
11 A sample River application. 27
12 Tigris Module interface. 29
13 Tigris ModuleThread operation. 31
14 Tigris Distributed Queue performance. 34
15 TigrisSort structure. 36
16 TigrisSort performance results. 38

1

1 Introduction

The Java programming environment [11] has made significant headway in sup-

port of a wide array of application areas, including mobile agent systems [27], distributed

programming models [24], enterprise-wide information processing [21], and scientific and

numerical computing [28]. As Java’s popularity grows, so will the demands placed upon it

to support even more diverse computing platforms, from embedded systems [25] to worksta-

tion clusters [34]. If we wish to bring Java to bear on large problems, it seems natural that

Java should take advantage of the resources of large-scale servers, including multiprocessors,

high-speed networks, and fast I/O.

A great deal of previous work has addressed problems with Java processor perfor-

mance, namely, efficiency of compiled code, thread synchronization, and garbage collection

algorithms [22, 26]. Java compilers, including both static and “just-in-time” (JIT) com-

pilers, are now capable of generating code which rivals lower-level languages such as C++

in performance [18]. However, in a large server environment, high-performance communi-

cation and I/O play a dominant role. These aspects of Java performance remain largely

unaddressed.

Implementing efficient communication and I/O generally requires the application

to invoke operating system calls, perform direct manipulation of memory (e.g., use point-

ers) to access memory-mapped I/O and network devices, and so forth. Unfortunately, these

operations are inexpressible as machine-independent Java bytecodes. Rather than exposing

low-level (and hence unsafe) machine operations directly to the Java application, it is desir-

able to abstract away the access mechanisms required for communication and I/O as a Java

object replete with type-safe methods and fields. Operations on these Java objects should

translate into efficient and direct (as much as possible) access to the low-level machine

resources they represent, while retaining the protection of the Java environment.

Java provides so-called “native methods” which enable code implemented in an-

2

other language (such as C) to be invoked from Java. This is typically used to abstract O/S

calls and other functions as Java classes. However, native methods incur a high overhead,

requiring that data be copied between Java and native code; in addition, implementing

native methods in a low-level language is error-prone and potentially negates the safety

guarantees of the Java sandbox. Considering these performance and safety limitations, we

believe native methods are ill-suited to enable high-performance communication and I/O

in Java.

We present an alternate approach, Jaguar,1 which enables direct, protected access

to system resources represented as Java objects. This is accomplished through compile-

time code transformation which maps certain Java bytecodes to short, inlined machine code

segments. This approach retains the type-safety and protection of the Java environment

while allowing applications to directly leverage server resources such as memory-mapped

network interfaces, raw disk I/O, and so forth. We demonstrate Jaguar through two ex-

amples: JaguarVIA, a Java binding to the VIA [29] fast communications substrate, and

Pre-Serialized Objects, a mechanism which greatly reduces the cost of rendering Java ob-

jects in an externalized form for communication or I/O.

In addition, we present Tigris, a cluster-based I/O system implemented in Java

using Jaguar facilities for fast communication and I/O. Tigris employs a dataflow program-

ming model allowing cluster resources to be automatically balanced across an application,

resulting in high performance even in the presence of resource perturbations. We believe

that the approach taken in Jaguar is general enough to capture a large range of additional

uses.

This thesis makes four major contributions. First, we present a novel approach to

enabling efficient and safe utilization of server hardware resources from Java. Second, we

present JaguarVIA, which obtains the same VIA communications performance as C. Third,
1Jaguar is an acronym for Java Access to Generic Underlying Architectural Resources.

3

we present Pre-Serialized Objects, and demonstrate how their use, as enabled by Jaguar,

can eliminate the high overhead of Java object serialization. Fourth, we present Tigris,

which allows Java-based cluster applications to take full advantage of cluster resources by

automatically balancing performance heterogeneity across multiple nodes.

The organization of the rest of this thesis is as follows. Section 2 provides back-

ground on the issues faced by Jaguar and related work. Section 3 describes the design and

implementation of Jaguar, and Section 4 demonstrates its use through a fast Java binding to

VIA. Section 5 describes Pre-Serialized Objects. Section 6 presents the Tigris system, and

Section 7 presents TigrisSort, a sample Tigris application. Section 8 discusses directions

for future work and Section 9 concludes.

2 Motivation and Background

In this section, we motivate the approach taken by Tigris by looking more closely

at the problems which it addresses.

A number of performance issues arise when one considers implementing large-scale

server applications in Java. These can be roughly divided into two categories: CPU-related

issues and I/O-related issues. In terms of the CPU, performance of compiled Java code

is the paramount concern, but other factors — including garbage collection and thread

synchronization — must be considered as well. Fortunately, a great deal of previous work

has investigated this problem domain, for Java [22, 26] as well as other object-oriented

languages [5, 8].

Java I/O performance remains largely uninvestigated. A primary goal is to give

Java applications efficient access to low-level system resources (such as fast network inter-

faces, I/O and RAID controllers, and so forth); such access is necessary for implementing

high-performance communication and I/O. It is this set of problems which Jaguar intends

to solve.

4

Traditionally, the operating system is responsible for providing applications ac-

cess to hardware, either through high-level interfaces (such as filesystems and sockets) or

lower-level mechanisms (such as raw disk I/O calls). However, in many cases it is desirable

to circumvent the operating system to obtain higher performance. In the case of fast net-

working, user-level network interfaces provide low-overhead communication while allowing

multiple processes to safely share the network interface (NI). Applications circumvent the

operating system kernel and directly access network interface resources, such as memory-

mapped data structures or “protected” NI registers. Doing so eliminates context switch

overhead and the cost of copying data between user and kernel space. A large number of

of user-level network interface prototypes have demonstrated this principle, such as Active

Messages [7] and U-Net [32]; VIA [29] is a recent effort to standardize these interfaces.

A related requirement for communication and I/O is the use of explicitly-managed

memory regions. For example, user-level network interfaces often require that communi-

cation buffers be pinned to physical memory for direct access by the NI hardware; these

pages must be allocated from a special pool or pinned dynamically by the O/S or NI [33].

Memory-mapped files are often used for I/O, and raw disk interfaces usually have special

requirements for buffer allocation. However, this requirement runs counter to the existing

Java model in which all objects and arrays are allocated from a single heap, managed by

the JVM’s garbage collector.

2.1 Related Work

Efficient I/O and communication in Java has been investigated through two pri-

mary avenues: implementing fast object serialization, and binding fast network interfaces

to the Java environment. In terms of serialization, [20] describes an optimized implementa-

tion of Java remote method invocation (RMI) which is based on careful coding and a new

serialization algorithm, coded entirely in Java. Manta [15] takes the more extreme approach

5

of translating the entire Java application to C, generating specialized per-class serialization

code. While this approach moves much of the run-time overhead of communication to com-

pile time, it necessitates a reengineering of the Java run-time, and the resultant environment

is arguably something other than “true” Java.

Several projects have attempted to bind fast communication layers into the Java

environment through the use of native methods. Native method bindings to MPI [10]

and PVM [30] have been described, however, neither of these have considered performance

issues with respect to obtaining low latency or high bandwidth. The approach taken by

Javia [6] is closest to that in Jaguar. It involves modifications to a static Java compiler to

enable efficient bindings to a commercial VIA implementation. In Javia, native methods

are used to invoke the C-based VIA library, while communication buffers are exposed to

Java through specially-generated code from a modified compiler. While this addresses most

of the performance issues with implementing a fast Java VIA interface, the approach does

not support efficient access to hardware resources in general.

2.2 Are native methods adequate?

Java native methods can provide access to low-level system functions, albeit at

high cost: the overhead of invoking native methods, and transferring data between Java

and native code, often outweighs their utility. This is of particular concern for fine-grained

operations such as manipulation of network interface data structures. Such operations are

performance-critical and should incur as little overhead as possible. Additionally, native

code requires that data be copied between specially-managed memory regions (such as

network buffers) and the Java heap, again resulting in high overhead.

Figure 1 details the overhead of native code invocation from Java. These mea-

surements were performed on a 350 MHz Pentium II running Linux 2.2.5 using Sun JVM

1.1.7. Here, the standard Java Native Interface (JNI) [23] was employed, which abstracts

6

Benchmark JNI C Slowdown
void arg, void return native method call .909 µsec 0.038 µsec 23.9
void arg, int return native method call .932 µsec 0.042 µsec 22.2
int arg, int return native method call .985 µsec 0.049 µsec 20.1
4-int arg, int return native method call 1.31 µsec 0.072 µsec 18.2
10-byte C-to-Java array copy 3.0 µsec 0.354 µsec (memcpy) 8.47
1024-byte C-to-Java array copy 18.0 µsec 1.68 µsec (memcpy) 10.7
102400-byte C-to-Java array copy 1706.0 µsec 432.5 µsec (memcpy) 3.94
10-byte Java-to-C array copy 7.0 µsec 0.354 µsec (memcpy) 19.8
1024-byte Java-to-C array copy 272.0 µsec 1.68 µsec (memcpy) 161.9
102400-byte Java-to-C array copy 27274.0 µsec 432.5 µsec (memcpy) 63.1

Figure 1: A comparison between Java Native Interface and C overheads.

away details of the JVM structure from native code; the intent is to allow native code to

be ported across different JVM architectures. For comparison, similar tests conducted in

C are shown; all compiler optimizations were disabled for the C benchmark. As the results

show, use of JNI is quite expensive, requiring nearly a microsecond just to perform a na-

tive method call and return. More serious is the array-copy overhead which would surely

limit the performance of any fast communication or I/O system implemented using native

methods.

Regardless of performance, however, native code is a blunt instrument with which

to enable low-level operations in Java. Native code must be as trustworthy as the JVM and

compiler, yet its power is effectively unlimited: a native method can spin in an infinite loop,

access any memory location, and crash the virtual machine. It is up to programmers to

exercise proper discipline when implementing native methods, but this discipline cannot be

enforced by the system in any way. Likewise, because native code is generally implemented

in a low-level language such as C, it is both error-prone and non-portable; it is difficult

to convince oneself that a piece of native code will work as advertised. The problem is

exacerbated by the fact that native methods must generally do a large amount of work to

amortize the cost of their invocation. This concern is a serious one, as it is the robustness

7

Java
Application Java

Application

Jaguar Primitives

Native Code

(a) Using Native Code (b) Using Jaguar

Figure 2: Native code and Jaguar compared.

of the Java environment which makes the language attractive in the first place.

The Jaguar approach is motivated by the observation that the sort of low-level

operations required for enabling high-performance communication and I/O are generally

short and easily expressed as a sequence of simple instructions (e.g., accessing a particular

memory address, or invoking a system call). This suggests that such operations can be

inlined into the compiled Java bytecode stream for performance, and that some form of

static analysis could be performed to guarantee safety or type-exactness. Such an approach

is tantamount to extending the Java runtime with new, safe primitives which perform

specialized operations on behalf of an application.

This situation is depicted in Figure 2. Rather than binding a large amount of

native code to Java, Jaguar allows the Java runtime to be extended with a set of new,

simple primitives. Because use of these primitives is inexpensive, nearly all functionality,

including complex system software, can be implemented in Java, leading to more robust

applications. The use of Jaguar lends itself to a programming style which uses mostly Java

8

and a small amount of native code, rather than the converse.

3 Jaguar Design and Implementation

Jaguar allows the Java runtime to be extended with new primitive operations

which enable efficient access to hardware resources. These primitives are specified as short

machine code segments which are directly inlined into the Java bytecode as it is compiled.

The fundamental operation of a Java compiler is to translate sequences of Java bytecodes

(which manipulate Java objects) into native machine code (which manipulate analogues of

those objects on the actual hardware). Jaguar builds upon this concept by introducing an

additional set of bytecode-to-machine code translation rules into the compiler, transforming

certain bytecode sequences directly to operations on low-level hardware resources.

There are two primary concepts embodied in Jaguar: code mappings and External

Objects.

3.1 Code mappings

Specifying new Java bytecodes to represent low-level machine operations would

necessitate modifications to the javac bytecode compiler and perhaps to the Java language

itself. Rather, we have chosen to apply the concept of code mappings which describe trans-

formations from Java bytecode sequences to inlined machine code. In this way, pre-existing

bytecodes (say, method calls or field accesses) are translated to specialized operations at

compile time. This approach affords a very natural programming model: low-level machine

operations are expressed as operations on regular Java objects. Accessing a field or calling

a method may transparently trigger an alternative sequence of machine events.

While Jaguar code mappings are similar in nature to native methods, there are

two major differences:

• Jaguar code mappings may be applied to virtually any bytecode sequence (such as

9

field accesses, operators, and so forth) while native code is limited to method in-

vocation. As such, Jaguar enables much greater expressiveness: machine resources

can be represented by Java objects, with methods, fields, or operators being used as

appropriate to describe low-level operations.

• Jaguar primitives consist of short, limited sequences of machine code rather than C

functions of arbitrary complexity. This property makes it easier to verify that the

implementation of a Jaguar primitive is correct. It also inherently limits Jaguar code

mappings to provide basic, low-level operations rather than extensive functionality.

In this way, applications can be written almost entirely in Java, aided by a few simple

primitives provided by Jaguar.

3.2 External Objects

Jaguar allows Java applications to directly manipulate memory outside of the

Java heap, such as specially-allocated buffers for communication and I/O. Jaguar code

mappings are used to rewrite field accesses on certain Java objects to directly manipulate

this “external” memory; we call the result External Objects. External Objects are treated

by the application as regular Java objects, the memory storage for which happens to be

located outside of the Java heap. This eliminates the expense of copying data between Java

and external memory as required by native code.

External Objects have numerous uses. They can be used to map Java object

references onto shared-memory segments, memory-mapped files, communication and I/O

buffers, and even memory-mapped hardware devices. Because field accesses are processed by

Jaguar using knowledge of both field name and type, different behaviors can be implemented

for different fields. For example, one field in an object may reference a communication buffer

while another references the network interface with which it is associated.

10

3.3 Implementation

Our prototype of Jaguar is implemented as a Java just-in-time compiler which has

been augmented with a set of transformation rules implementing Jaguar code mappings.

Each such mapping describes a particular bytecode sequence and a corresponding machine

code sequence which should be generated when this bytecode is encountered during compi-

lation. An example of such a mapping might be to transform the bytecode invokevirtual

SomeClass.someMethod() into a specialized machine code fragment which directly manip-

ulates a hardware resource in some way.

Our prototype JIT compiles Java bytecode to machine code by performing a

straightforward translation from each bytecode to a particular machine code template.

Jaguar code mappings are implemented by rewriting certain Java bytecodes as Jaguar-

specific “meta-bytecodes” during the first pass of the compiler; machine code templates for

each such meta-bytecode are provided which implement new Jaguar primitives. For ex-

ample, the operation invokevirtual SomeClass.someMethod might be translated to the

meta-bytecode opc do somemethod, and the machine code template for opc do somemethod

will be inlined into the compiled code sequence during the compiler’s second pass.

Jaguar code mappings can be applied to virtually any bytecode sequence; however,

they are limited in two fundamental ways:

• The system must have enough information to determine whether the mapping should

be applied at compile time. This has an impact on the use of bytecode transformation

for virtual methods (see below).

• Recognizing the application of certain mappings is easier than others. For example,

mapping a complex sequence of arrayref and add bytecodes to, say, a fast vector-

add instruction would certainly be more difficult than recognizing a method call to a

particular object.

11

In our current prototype, these transformation rules must be compiled into the

JIT compiler itself; however, we are currently working on a new implementation (based on

the OpenJIT [17] compiler) which allows new code mappings to be specified at runtime.

Such an approach presents numerous opportunities for dynamic code specialization beyond

the scope of this thesis.

Jaguar runs on the Intel x86 platform under Linux 2.2.5 and Sun JDK 1.1.7.

3.4 Discussion

Apart from the mechanisms employed by Jaguar, by far the most important as-

pect of this approach is the programming model which it enables. By extending the Java

environment with the minimal set of necessary primitives, it is possible to implement com-

plex system software entirely in Java. For example, high-level messaging protocols or disk

buffer allocation strategies can be implemented in Java, with only the lowest-level system

functions aided by Jaguar code mappings. This helps to ensure the safety and robustness

of such system software, and is preferable to wrapping a complex, unwieldy piece of C code

up as a set of Java native methods.

Because our prototype specifies code mappings as machine code segments, it is

necessary to trust these code mappings as one would trust the compiler or JVM. In some

sense, this is more viable than trusting native methods; it is far easier to convince oneself

that a short piece of machine code will behave correctly and maintain protection than a

complex set of functions coded in C. Using machine code also has the beneficial side-effect

that it is difficult for programmers to implement overly complex functionality as a single

Jaguar primitive. We are currently investigating the use of a higher-level language in which

to represent code mappings, which may allow automatic type-checking and verification.

There is an issue with respect to applying code mappings to virtual method invo-

cations. Normally, the Java runtime resolves virtual method calls at run time, dispatching

12

them to the correct implementation based on the type of the object being invoked. Jaguar

currently does not perform any run-time type checks for virtual method code mappings,

meaning that an “incorrect” code transformation may be applied to an object if it is cast

to one of its superclasses at runtime. While it is feasible to incorporate code transforma-

tions into the run-time “jump table” used by the JVM for virtual method resolution, a

workaround in the current prototype is to limit transformations to virtual methods which

are marked as private or final, which prohibit overloading. Use of static methods is

unproblematic.

Quite similar to Jaguar code mappings is semantic inlining [35], a technique which

extends the compiler to treat certain operators and method calls as new Java primitives

which are inlined. Semantic inlining has been used to implement fast complex arithmetic (by

inlining operators on objects of type Complex) as well as efficient multidimensional arrays.

While the mechanism has much in common with Jaguar, its focus has been on the needs of

numerical computing rather than enabling fast communication and I/O. As such, Jaguar

raises issues with safely exposing low-level resources to Java applications which semantic

inlining alone does not address.

The next two sections evaluate Jaguar through two applications: a fast Java bind-

ing to the VIA communications architecture, as well as Pre-Serialized Objects, a mechanism

which eliminates Java object serialization overhead for communication and I/O.

4 JaguarVIA

As an example use of Jaguar enabling efficient access to low-level resources, we

have implemented JaguarVIA, a Java interface to the Berkeley Virtual Interface Archi-

tecture (VIA) communications layer [3]. VIA [29] is an emerging standard for user-level

network interfaces which enable high-bandwidth and low-latency communication for work-

station clusters over both specialized and commodity interconnects. This is accomplished

13

T R
X X

T R
X X

T R
X X

T R
X X

T R
X X

VI #1

NIC SRAM)

T
X

R
X

T
X

R
X

TX
RX

TX
RX

Doorbells

Doorbells
(Mapped from

VI #0

Queues

(one pair per VI)

(in pinned RAM)
Buffers

Network

Myrinet NIC
(1Mb SRAM, 37Mhz CPU)

User Process

Figure 3: Berkeley VIA Architecture.

by eliminating data copies on the critical path and circumventing the operating system for

direct access to the network interface hardware; VIA defines a standard API for applica-

tions to interact with the network layer. Berkeley VIA is implemented over the Myrinet

system area network, which provides raw link speeds of 1.2 Gbps; generally, the effective

bandwidth to applications is limited by I/O bus bandwidth. The Myrinet network interface

used in Berkeley VIA has a programmable on-board controller, the LanAI, and 1 megabyte

of SRAM which is used for program storage and packet staging. The implementation de-

scribed here employs the PCI Myrinet interface board on dual 450 MHz Pentium II systems

running Linux 2.2.5.

4.1 The Berkeley VIA architecture

The Berkeley VIA architecture is shown in Figure 3. Each user process may

contain a number of Virtual Interfaces (VIs), each of which corresponds to a peer-to-peer

communications link. Each VI has a pair of transmit and receive descriptor queues as well

14

as a transmit and receive doorbell corresponding to each queue.

To transmit data, the user builds a descriptor on the appropriate transmit queue,

indicating the location and size of the message to send, and “rings” the transmit doorbell

by writing a pointer to the new transmit queue entry. In order to receive data, the user

pushes a descriptor to a free buffer in host memory onto the receive queue and similarly

rings the receive doorbell.

The LanAI processor on the NI is responsible for polling the doorbells and taking

appropriate action to transmit or receive data on behalf of the (potentially) multiple user

processes sharing the network interface.

Transmit and free packet buffers must be first registered with the network interface

before they are used; this operation, performed by a kernel system call, pins them to

physical memory. The network interface performs virtual-to-physical address translation

by consulting page maps in host memory, using an on-board translation lookaside buffer to

cache address mappings.

The C API provided by VIA includes routines such as the following:

• VipPostSend(), post a buffer on the transmit queue;

• VipPostRecv(), post a buffer on the receive queue;

• VipSendWait(), wait for a packet to be sent;

• VipRecvWait(), wait for a packet to be received;

as well as routines to handle VI setup/teardown, memory registration, and so forth.

4.2 JaguarVIA Implementation

Implementing an efficient Java binding to VIA, then, relies upon two major re-

quirements:

1. The ability to efficiently manipulate VIA doorbells and queues; and

15

2. The ability to directly access registered VIA data buffers, without a copy.

Exposing the JaguarVIA API to Java could be implemented through the Java

native code interface, however, copying data between C and Java is expensive, and the high

overhead of native method invocation would dominate the cost of issuing VIA API calls;

most of these functions do little more than manipulate a couple of pointers, or write small

values to the doorbells. Because CPU overhead can be the dominant factor when considering

application sensitivity to network interface performance [16], maintaining minimal host

overhead for VIA operations is desirable.

JaguarVIA is implemented using two components: first, a Java library duplicating

the functionality of the C-based library which provides the VIA API; and second, a set of

Jaguar code mappings which translate low-level operations on VIA descriptor queues, door-

bells, and data buffers into fast machine code segments. Thus, the majority of JaguarVIA

is implemented in Java itself, and only the barest essentials are handled through Jaguar

code transformations.

Let us consider the operation of the VipPostSend method, contained in the VIA VI

class. Here is the Java source code:

public int VipPostSend(VIA_Descr descr) {
/* Queue management omitted ... */
while (TxDoorbell.isBusy()) /* spin */;
TxDoorbell.set(descr); return VIP_SUCCESS;

}

Its essential function is to poll the transmit doorbell until it is ready to be written,

and then set its value to point to the transmit descriptor specifying the data to be sent.2

Here, TxDoorbell is a private field in the VIA VI class representing the transmit doorbell

for this VI, and Descr is an object of the type VIA Descr representing the descriptor-queue

entry for the packet to be sent.
2Additional code to maintain a linked list of outstanding transmit descriptors has been omitted for space

reasons.

16

package Jaguar.JaguarVia;

public class VIA_Doorbell {
/* Address of doorbell in memory */
private int vaddr;

public boolean isBusy() {
/* No body; implemented by Jaguar */
return false;

}

public void set(VIA_Descr descr) {
/* No body; implemented by Jaguar */

}
}

Figure 4: Source code for the VIA Doorbell class.

The layout of the doorbell structure, as mapped from the SRAM of the network

interface, is two 32-bit words: the first is a pointer to the transmit descriptor itself, and

the second is a memory handle, an opaque value which is associated with the registered

memory region in which the descriptor is contained. To poll the doorbell it is sufficient

to test whether the first word is non-zero. To update the doorbell, both values must be

written (first the memory handle, then the descriptor pointer) as virtual addresses in the

process address space; however, the Java application has no means by which to generate or

use virtual addresses directly. In fact, we wish to prevent the application from specifying

an arbitrary address as a transmit or receive descriptor (say), as this would allow the

application to access or corrupt any virtual memory address, including memory internal to

the JVM.

The Java source code for the VIA Doorbell class is shown in Figure 4. The meth-

ods VIA Doorbell.isBusy and VIA Doorbell.set are implemented through Jaguar code

mappings. Jaguar recognizes the bytecode sequence invokevirtual VIA Doorbell.isBusy

(as well as for VIA Doorbell.set) and inlines machine code which performs the doorbell

17

public int VipPostSend(VIA_Descr descr) {
 /* ... */
 while (TxDoorbell.isBusy()) ; // poll
 TxDoorbell.set(descr);
 return VIP_SUCCESS;
}

43 aload_0
44 getfield <TxDoorbell>
47 invokevirtual <isBusy()>
50 ifne 43
53 aload_0
54 getfield <TxDoorbell>
57 aload_1
58 invokevirtual <set(VIA_Descr)>
61 iconst_0
62 return

set: %ebx <- Doorbell.vaddr;
 %eax <- Descr.memhandle;

 %eax <- Descr.vaddr;
 movl %eax,4(%ebx);

 movl %eax,0(%ebx);

isBusy: %eax <- Doorbell.vaddr;
 movl $0, %edx;
 cmpl $0, 4(%eax);
 setne %dl;���������	�

��
���
������� � ��� ����� �

����������� �"!�# �������

� � �$�"!	# �	�����

����%�� & � ��� ���	�������

����%�� ����� ���	�����

' �"%�� �

Figure 5: JaguarVIA Code Transformations.

polling and write functions, respectively. This process is depicted in Figure 5.

In the case of isBusy, the machine code segment simply tests the first word of

the doorbell for a non-zero value, and pushes a true or false value onto the Java stack

as appropriate. In the case of set, the machine code segment writes the two words of the

doorbell in the appropriate order. The address of the doorbell itself (as mapped from the

LanAI SRAM) is stored in a private field within the doorbell class, and is extracted from the

doorbell object by the generated machine code. Similarly, the address and memory handle

of the VIA Descriptor object are stored in private fields of that class. The use of private

fields ensures that only trusted code is capable of accessing those values — in this case,

constructors which create doorbell and descriptor objects, and the Jaguar code mappings

which operate on them.

VIA packet buffers are an example of Jaguar External Objects at work. They are

implemented as the class VIA Databuffer, which represents a region of registered virtual

memory. The data buffer may be manipulated in a manner similar to a Java array, through

the methods readByte/writeByte, readInt/writeInt, and so forth. These methods are

implemented through Jaguar code mappings which directly manipulate the contents of the

18

Jaguar
C

60

80

100

120

140

160

180

200

220

240

260

280

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
ou

nd
-t

ri
p

tim
e,

 u
se

c

Message size, bytes

JNI simulated (10x)

JNI simulated

Jaguar
C

0

50

100

150

200

250

300

350

400

450

500

0 5000 10000 15000 20000 25000 30000 35000

B
an

dw
id

th
, M

bi
ts

/s
ec

Message size, bytes

Figure 6: JaguarVIA performance results. The figure on the left shows round-trip latency
as a function of message size for raw VIA, as accessed from C, and JaguarVIA. The figure
on the right shows message bandwidth as a function of message size for C-based VIA access,
JaguarVIA, and simulated results for accessing VIA through the Java Native Interface.

buffer in virtual memory. The class contains the private fields vaddr, size, and memhandle

which keep track of the buffer’s address, size, and VIA memory handle, respectively. A

VIA Databuffer is created through a special constructor which allocates a memory region

outside of the JVM heap and registers (pins) it through the appropriate system call; this

memory is not managed directly by the JVM. The class can also be used as a “container”

for Jaguar Pre-Serialized Objects, as described in Section 5.

4.3 JaguarVIA Performance

To demonstrate the efficiency of this approach to mapping VIA resources into Java,

we implemented two standard VIA microbenchmarks: pingpong, which measures round-

trip latency for messages of varying sizes, and bandwidth, which measures the bandwidth

obtained when streaming packets through the network interfaces at the maximum rate.3

The results of these microbenchmarks for C and Java are shown in Figure 6. The

Java and C pingpong benchmarks obtain identical performance with a minimal round-

trip time of 70 microseconds for small messages. bandwidth in Java obtains 99% of the
3Note that Berkeley VIA itself does not implement flow control or reliable delivery; applications are

expected to implement their own protocols over the raw transport mechanisms provided. Therefore, the
bandwidth benchmark makes no presumption about the flow-control protocol used, and assumes that data
is received as rapidly as it is transmitted.

19

bandwidth achieved by C, peaking at 488 megabits/sec for 32Kb packets. The lost efficiency

is due to higher loop and method-call overheads in Java. More aggressive optimization in

the JIT compiler used by Jaguar should be able to overcome these issues.

To highlight the advantage of using Jaguar over the Java native code interface, we

have estimated the performance of the bandwidth benchmark if the Java Native Interface

(JNI) were used to provide VIA functionality in Java. In the estimation, the overhead

of using JNI (from Figure 1) was added to the measured per-message cost and the re-

sulting bandwidth recalculated. We assume that each native method call costs 1.0 µsec

and that copying data from Java to native code costs 270 µsec per kilobyte. Four native

method calls are required per message transmitted. The estimated bandwidth peaks at

28.55 megabits/sec, a factor of 17 smaller than JaguarVIA. Even if the performance of the

native interface were a factor of 10 faster than it is currently, the peak bandwidth would be

only 187 megabits/sec, far below that obtained with Jaguar.

These results clearly show the performance benefit of the Jaguar approach. VIA

communication requires several fine-grained manipulations of NI resources (doorbells and

descriptor queues) per message, for which the cost of the native code interface would be

prohibitive. Furthermore, the use of Jaguar External Objects provides a thin interface to

VIA packet buffers, enabling zero-copy communication.

5 Pre-Serialized Objects

JaguarVIA allows arbitrary sequences of bytes to be transferred over the network,

using the VIA Databuffer class to represent a registered communication buffer. The meth-

ods on this class treat the buffer as a simple array; however, it is desirable to allow more

structured Java objects to be communicated over VIA.

The traditional approach to communicating or storing Java objects is to use Java

object serialization, which writes out the state of a set of Java objects as a string of bytes.

20

public class MyObject extends PSO {
public static int getPSOSize() {
/* Jaguar redirected */

}
/* Fields */
public int someInt;
public byte someByte;
public MyObject someRef;

}
��
��

��
��

��
��

someInt

someByte

someRef

someInt

someByte

someRef

someInt

someByte

someRef

38 7f 00 00

38 80 00 00
43 00 00 00
ff ff ff ff
38 81 00 00
44 00 00 00
00 00 00 00

���
	
�����	�����������

42 00 00 00
24 00 00 00

O
b
j
1
.
s
o
m
e
R
e
f

=

O
b
j
3
;

O
b
j
3
.
s
o
m
e
R
e
f

=

O
b
j
1
;

Figure 7: An example PSO and its memory layout.

Java objects may be later recovered from this string of bytes, meaning that the bytes are

retrieved from the disk or network and converted into a set of new Java objects.

Standard implementations of Java serialization are quite costly, although alterna-

tives have been developed [20]. These alternatives, however, rely upon making a copy of

the data contained within a Java object and all objects referred to by it. Efficient serial-

ization is the key problem to overcome in implementing high-performance communication

and persistence models in Java, such as Remote Method Invocation [15].

A special use of Jaguar code mappings is to implement Pre-serialized Objects, or

PSOs. Abstractly, a PSO can be thought of a Java object for which the memory repre-

sentation is already serialized. PSOs eliminate the copy and reference-traversal steps in

serialization and de-serialization by requiring that the object be stored in a “pre-packaged”

form, ready for storage or communication. Sending the PSO over a communications link,

therefore, requires nothing more than directly transmitting the pre-serialized object buffer

in memory. On the receiver, the buffer into which data was received need only be pointed

to by a new PSO reference.

21

5.1 PSO Implementation

PSOs are implemented through specialized Jaguar code mappings which recognize

putfield and getfield accesses to the object in question, marshalling object data into

and out of its pre-serialized form. Atomic fields (byte, long, and so forth) are stored using

a simple machine-independent representation. The position of each field within the PSO

buffer region is determined in a manner similar to that of a C struct: each field is stored

at a location which maintains alignment constraints on common architectures (for example,

that a 32-bit value must be stored on a 32-bit word boundary).

Figure 7 shows code for a simple user-defined PSO type and the memory layout

of three such PSOs with references between them.

Object references are handled by requiring that each PSO have an associated

container, which is a Jaguar External Object acting as the backing store for the object’s

pre-serialized form. Multiple PSOs may share the same container, and containers can be

nested. (The JaguarVIA VIA Databuffer class implements a PSO container, allowing PSOs

to be stored within VIA communication buffers.) Each PSO can be thought of as occupying

a certain location in its container, with an associated offset and size. The PSO’s container

and offset are stored as private fields in the PSO itself, and are accessed by the Jaguar code

mappings which implement PSOs.

When a reference to another PSO is stored using the putfield bytecode, if the two

PSOs are within the same container, then the referenced object’s offset into that container is

stored. Otherwise, a special null value is stored, indicating that the object reference cannot

be recovered externally to this JVM. Note, however, that references to PSOs outside of

the container and to non-PSO objects are permitted; such references are stored within

the field slot of the Java object corresponding to the PSO. However, these references are

unrecoverable outside of this JVM (e.g., by the receiver of a PSO sent over a communications

channel).

22

The first time an object reference is read (using the getfield bytecode), a new

Java PSO object is created which maps onto the container at the given offset. If the

stored offset is null or outside of the range of the container, the special Java null value is

returned. Subsequent getfield accesses will yield the PSO reference created during the

original access, which is stored in the actual Java object corresponding to the PSO. Thus,

object references within a PSO are resolved “lazily,” that is, only upon their first use. This

has the advantage that if a reference within a received PSO container is never traversed, a

Java object reference will never be created for it.

5.2 Limitations

Pre-serialized Objects have several limitations. The first is that arbitrary Java

objects cannot be represented as PSOs; the implementation depends upon the use of Jaguar

code mappings for putfield/getfield operations on particular classes (in this case, any

subclasses of Jaguar.PSO). It would be possible, however, to integrate the use of a standard

Java object serializer with PSOs, allowing those portions of the object not pre-serialized by

Jaguar to be serialized and deserialized in the standard way (albeit at higher cost).

A second limitation is that only atomic types and references to other PSOs within

the same container are recoverable from a PSO’s memory representation. This is not as

limiting as it might seem. Java arrays are simulated through a generic PSOArray class

which permits array-like operations on a container using method calls such as readByte

and writeInt.

Further, we believe that the efficiency afforded by PSOs will make it worthwhile for

programmers to manage PSO cross-references within the same container. Finding the right

balance of programming generality and efficiency in this case is an open research issue.4

4Supporting cross-container PSO references is feasible, but unsupported by our current prototype. We
have decided to retain the simplicity and performance of this design rather than building a more general,
and less efficient, implementation.

23

Benchmark Time
Create PSO object 9.24 µsec
Recover PSO reference 8.9 µsec
Follow recovered PSO reference 0.305 µsec
Assign PSO int field 0.033 µsec
Assign Java int field 0.023 µsec
Write int PSOArray element 0.053 µsec
Read int PSOArray element 0.049 µsec
Write int array element 0.041 µsec
Read int array element 0.043 µsec

Figure 8: Pre-Serialized Object microbenchmarks.

5.3 PSO Performance

We measure the performance of Pre-Serialized Objects in three ways: a set of

microbenchmarks showing basic performance, a benchmark comparing PSOs to object se-

rialization for communication over VIA, and a benchmark demonstrating the use of PSOs

for high-performance disk I/O.

Figure 8 shows results for a simple microbenchmark of Pre-serialized Object per-

formance. This benchmark creates a linked list of objects, with the same structure as

MyObject shown in Figure 7, filling a one-megabyte container.

First, the benchmark creates each object in the list and fills in each field in the

object. Next, recovery of the list from the pre-serialized buffer is simulated by “forgetting”

the original list head and mapping a new PSO onto the beginning of the buffer. Each

list entry is traversed by following the someRef reference to the next list element; this

requires that the next list element be recovered, creating a new PSO instance mapping onto

the container at the appropriate offset.Next, the benchmark traverses each list element a

second time, which uses the cached PSO references created during the first traversal.

Times are shown for creating a PSO, for recovering a PSO from its pre-serialized

form, and for reading a pre-recovered PSO reference. Also shown is the time to write a

24

Original JaguarVia
Using PSOs

Using serialization

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
ou

nd
-t

ri
p

tim
e,

 u
se

c

Message size, bytes

Using PSOs

Original JaguarVia

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
ou

nd
-t

ri
p

tim
e,

 u
se

c

Message size, bytes

Figure 9: PSO-over-VIA message latency results. The figure on the left compares the use
of PSOs and JaguarVIA with Java object serialization; the figure on the right compares the
use of PSOs over JaguarVIA with raw JaguarVIA communication times.

PSO field of type int, which is compared to writing an int field to a regular Java object.

Also shown in Figure 8 are timings for reading and writing every element of the

one-megabyte container as a PSOArray, which treats the container as a simple array of int.

These values are compared to accessing elements of a Java int array. PSOArrays are only

slightly more expensive than regular Java arrays, due to higher bounds-checking cost in the

Jaguar code mappings implementing PSOArrays.

Pre-Serialized Objects eliminate the high cost of Java object serialization for com-

munication and I/O. To demonstrate this, we have augmented the original JaguarVIA

pingpong benchmark (from Figure 6) to transmit a linked list of simple Java objects con-

sisting of nine fields: four bytes, four ints, and a reference to the next object in the

list.

There are two variations on this benchmark shown. The first uses Pre-Serialized

Objects to store object data directly into a VIA communications buffer. The second uses

standard Java object serialization to write the linked list into the buffer. This was ac-

complished by implementing a simple class, ViaOutputStream, which writes bytes into a

VIA communications buffer. A standard Java ObjectOutputStream, which performs object

serialization, is created which writes serialized data to the ViaOutputStream.

To simplify both benchmarks, serialization is performed only by the transmitter;

25

no de-serialization (or mapping of PSO objects onto the received packet) is performed by

the receiver. In the PSO version of the benchmark, the time to assign values to each field

of each PSO in the linked list is included in the measurement, which represents the worst-

case performance: a real application may be able to eliminate this overhead by re-using

a PSO multiple times. In the object serialization benchmark, only the time to create a

new ObjectOutputStream, and call writeObject with the head of the linked list as an

argument, are included. This is the minimum amount of work required to serialize a set of

objects.5

Figure 9 shows the round-trip time as a function of the message size for the use

of PSOs over VIA, object serialization over VIA, and the raw JaguarVIA timings(from

Figure 6). The right-hand plot does not include the object serialization times, as these dwarf

the PSO and raw VIA measurements. It is clear that Pre-Serialized Objects eliminate the

high overhead of object serialization: transmitting a linked list of 128 PSOs filling a four-

kilobyte buffer has a round-trip latency of 341 µsec, while using Java object serialization

costs 26843 µsec, a factor of 78 higher.

For comparison, transmitting an empty 4 Kb buffer using JaguarVIA has a round-

trip latency of 262 µsec; filling the buffer using PSOs adds only 39.5 µsec each way, or (39.5

µsec / 128 objects) = 0.30 µsec per object. If the buffer were filled using the PSOArray

mechanism described above, the cost would be (0.053 µsec per word / 1024 words) = 54.2

µsec. Note that accessing fields of a PSO does not require any bounds-checking to be done:

the check is performed when the PSO is created (and mapped onto an underlying container).

However, the PSOArray must bounds-check each access.

To evaluate the use of Pre-Serialized Object arrays to implement efficient disk I/O

in Java, Figure 10 shows results for a simple benchmark which scans a one-megabyte file of

random integers for the maximum value. This not only stresses the I/O component of the
5It is necessary to create a new ObjectOutputStream for each message; otherwise, the stream will serialize

the linked list just once, for the first packet, and for subsequent packets will store a reference to the previously-
serialized state. Because each packet is independent, this is unacceptable.

26

Benchmark Time MByte/sec
DataInputStream 4910 ms 0.203
DataInputStream (buffered) 488 ms 0.672
Jaguar PSOArray 28 ms 35.71
C (unbuffered read) 771 ms 1.32
C (mmap) 23 ms 43.47

Figure 10: PSO File-scan benchmarks.

system but brings the data into the application to perform simple analysis.

There are several variations on the benchmark. The first two use the standard

Java DataInputStream class, both with and without an underlying BufferedInputStream.

The third uses the Jaguar PSOArray class to treat a memory-mapped file as an array of

bytes or integers. The final two results show the same benchmark in C, using unbuffered

read system calls as well as mmap to access the file.

As the results show, only the Jaguar PSOArray and C-based mmap benchmarks

obtain good performance (23 and 28 milliseconds, respectively). Both of these operate on

memory-mapped files, so we should expect performance to be higher than the use of file

I/O. The additional cost of the PSOArray over direct use of mmap from C is due to several

factors: the PSOArray methods perform bounds-checking while the C code does not, and

the optimizations in our prototype JIT compiler are not as advanced as in the C compiler.

External Objects and PSOs are a powerful means of enabling efficient I/O in Java.

They provide direct access to memory-mapped files and a means to reduce the cost of object

serialization. We believe these results indicate that higher-level I/O and communication

mechanisms (such as persistent data structures and RPC) can be efficiently implemented

using Jaguar.

27

Modules Disks

D
is

tr
ib

u
te

d
 Q

u
eu

e

D
is

tr
ib

u
te

d
 Q

u
eu

e

ModulesDisks

Modules

Read Data Write Data
Sort, etc.

Hash-Join,

Figure 11: A sample River application.

6 The Tigris System

To demonstrate the high-level application benefits of Jaguar, we have implemented

Tigris, a system supporting scalable, cluster-based applications with large I/O and com-

munication demands. The key ideas in Tigris are borrowed from River [2], a system which

automatically balances CPU, network, and disk I/O load across the cluster as a whole. River

employs a dataflow programming model wherein applications are expressed as a series of

modules each supporting a simple input/output interface. Modules communicate through

the use of reservoirs, channels upon which data packets can be pushed into or pulled out

of. A simple data-transformation application might consist of three distinct modules: one

which reads data from a disk file and streams it out to a reservoir; one which reads packets

from a reservoir and performs some transformation on that data; and one which writes

data from a reservoir back onto disk. Figure 11 depicts this scenario. By running multiple

copies of these modules across many nodes of a cluster, the overall throughput of the data

transformation can be scaled.

The goal of River is to automatically overcome cluster resource imbalance and

mask this behavior from the application. For example, if one node in the cluster is more

28

heavily loaded than others, without some form of work redistribution the application may

run at the rate of the slowest node. The larger and more heterogeneous a cluster is, the

more evident this problem will be; often, performance imbalance is difficult to prevent (for

example, the location of bad blocks on a disk can seriously affect its bandwidth). This is

especially true of clusters which utilize nodes of varying CPU, network, and disk capabilities.

Apart from hardware issues, software can cause performance asymmetry within a cluster as

well; for example, “hot spots” may arise based on the data and computation distribution

of the application.

River addresses resource imbalance in a cluster through two mechanisms: a dis-

tributed queue (DQ) which balances work across consumers in the system, and graduated

declustering (GD), mechanism which adjusts load across producers. The DQ allows data

to flow at autonomously adaptive rates from producers to consumers, thereby causing data

to “flow to where the computation is.” GD is a data layout and access mechanism which

allows producers to share the production of data being read from multiple disks. By mir-

roring data sets on several disks, disk I/O imbalance is automatically managed by the GD

implementation.

Tigris is an implementation of the River system in Java. This was motivated

for several reasons. First, Java is a natural platform upon which to build cluster-based

applications, for reasons described in the introduction. Second, River is attractive as a

programming paradigm for cluster-based Internet service architectures being investigated

by the Ninja project [31] at UC Berkeley. Because Ninja relies heavily upon the use of

the Java runtime environment (as in MultiSpace [12]), mapping the concepts in River to an

implementation in Java presented an opportunity to address issues with the use of Java, the

Ninja service platform, and the River programming model all at once. Finally, we felt that

River could benefit greatly from the integration of Java, both in terms of code simplification

and added flexibility. For example, the use of Java Remote Method Invocation (RMI) for

29

public interface ModuleIF {
public String getName();
public void init(ModuleConfig config);
public void destroy();
public void doOperation(Water inWater,
Reservoir outRes);

}

Figure 12: Tigris Module interface.

control of Tigris components is more expressive and simpler to program than a lower-level

control mechanism.

6.1 Implementation overview

Here, we focus on the details of the Tigris system as they differ from the original

C++ implementation of River (Euphrates) described in [2].

Tigris is implemented entirely in Java. Each cluster node runs a Java Virtual Ma-

chine which is bootstrapped with a receptive execution environment called the iSpace [12].

iSpace allows new Java classes to be “pushed into” the JVM remotely through Java Remote

Method invocation. A Security Manager is loaded into the iSpace to limit the behavior of

untrusted Java classes uploaded into the JVM; for example, an untrusted component should

not be allowed to access the filesystem directly. This allows a flexible security infrastructure

to be constructed wherein Java classes running on cluster nodes can be given more or fewer

capabilities to access system resources based on trust.

Tigris modules are implemented as Java classes which implement the ModuleIF

interface, which is shown in Figure 12. This interface provides a small set of methods which

each module must implement. init and destroy are used for module initialization and

cleanup, and getName allows a module to provide a unique name for itself. The doOperation

method is the core of the module’s functionality: it is called whenever there is new incoming

30

data for the module to process, and is responsible for generating any outgoing data and

pushing it down the dataflow path which the module is on.

Communication is managed by two classes: Reservoir and Water. The Reservoir

class represents a communications channel between two or more modules; it provides two

methods, Get and Put, which allow data items to be read from and written to the com-

munications channel. The Water class represents the unit of data which can be read from

or written to a Reservoir; this is the same unit of work which is processed by the module

doOperation method. A Water can be thought of as containing one or more data buffers

which can be accessed directly (through the Jaguar PSOArray class) or out of which Jaguar

Pre-Serialized Objects can be allocated from. This allows the contents of a Water to repre-

sent a structure with typed fields which have meaning to the Java application, rather than

as an untyped collection of bytes or integers.

By subclassing Reservoir and Water, different communication mechanisms can

be implemented in Tigris. A particular Water implementation can be associated with a

particular Reservoir; for example, in case the communications channel requires special

handling for the data buffers which can be sent over it. Our prototype implementation

includes three reservoir implementations:

• ViaReservoir provides reliable communications over Berkeley VIA using the previously-

described JaguarVia library.

• MemoryReservoir implements communications between modules on the same JVM,

passing the data through a FIFO queue in memory.

• FileReservoir associates the Get and Put reservoir operations with data read from

and written to a file, respectively. This is a convenient way to abstract file I/O.

Waters are initially created by a Spring, an interface which contains a single

method: createWater(int size). Every Reservoir has associated with it a Spring im-

31

Select upstream

Select downstream

Module
Thread

Upstream
Reservoirs

Downstream
Reservoirs

Module
doOperation()

Module

Incoming data

Outgoing data

Figure 13: Tigris ModuleThread operation.

plementation which is capable of creating Waters which can be sent over that Reservoir.

This allows a Reservoir implementation to manage allocation of Waters which will be

eventually transmitted over them; for example, a reservoir may wish to initialize data fields

in the Water to implement a particular communications protocol (e.g., sequence numbers).

The implementation of Water can ensure that a module is unable to modify these “hidden”

fields once the Water is created, by limiting the range of data items which can be accessed

by the application.

Each Module has an associated ModuleThread which is responsible for repeatedly

issuing Get from the module’s “upstream” reservoir and invoking doOperation with two

arguments: the input Water, and a handle to the “downstream” reservoir to which any

new data should be sent. A single ModuleThread may have multiple upstream and down-

stream reservoirs associated with it; for example, to implement one-to-many or many-to-one

communication topologies in the dataflow graph of the application. (This is also the cor-

nerstone of the Distributed Queue implementation in Tigris, as we will see later.) Different

32

implementations of ModuleThread can implement different policies for selecting the reser-

voir which should be used for each invocation of the module’s doOperation method. For

example, RRModuleThread implements a round-robin scheme for selection of both the up-

stream and downstream reservoir on each iteration.6 Figure 13 depicts the operation of the

ModuleThread main loop.

6.2 Distributed Queue implementation

In Tigris, the DQ is implemented as a subclass of ModuleThread which balances

load across multiple downstream reservoirs. In this way, all reservoirs in Tigris are main-

tained by ModuleThreads, and modules themselves are unaware of the connectivity of the

dataflow graph.

There are three ModuleThread implementations included in our prototype:

RRModuleThread selects the upstream and downstream reservoir for each iteration

in a round-robin fashion.

RandomModuleThread selects the upstream reservoir for each iteration using round-

robin, and the downstream reservoir using a randomized scheme. The algorithm maintains

a credit count for each downstream reservoir. The credit count is decremented for each

Water sent on a reservoir, and is incremented when the Water has been processed by the

destination (e.g., through an acknowledgement). On each iteration, a random reservoir R

is chosen from the list of downstream reservoirs. If that reservoir has a zero credit count,

another reservoir is chosen. This is the DQ implementation used in the original River

implementation [2].

LotteryModuleThread selects the upstream reservoir for each iteration using round-
6By passing a handle to the current downstream reservoir to doOperation, the module is capable of

emitting zero or more Waters on each iteration. Also, this permits the module to obtain a handle to the
reservoir’s Spring to create new Waters to be transmitted. Note that the module may decide to re-transmit
the same Water which it took as input; because a reservoir may not be capable of directly transmitting an
arbitrary Water (for example, a ViaReservoir cannot transmit a FileWater), the reservoir is responsible for
transforming the Water if necessary, e.g., by making a copy.

33

robin, and the downstream reservoir using a “lottery” scheme. The algorithm maintains a

credit count for each downstream reservoir. On each iteration, a random number r is chosen

in the range (0..N) where N is the total number of downstream reservoirs. The choice of r is

weighted by the value w = (cR/C) where cR is the number of credits belonging to reservoir

R and C =
∑
cR. The intuition is that reservoirs with more credits are more likely to be

chosen, allowing bandwidth to be naturally balanced across multiple reservoirs.

6.3 Initialization and control

A Tigris application is controlled by an external agent which contacts the iSpace of

each cluster node through Java RMI, and communicates with the RiverMgr service running

on that node. RiverMgr provides methods to create a ModuleThread, to create a reservoir,

to add a reservoir as an upstream or downstream reservoir of a given ModuleThread, and

to start and stop a given ModuleThread. In this way the Tigris application and module

connectivity graph is “grown” at runtime on top of the receptive iSpace environment rather

than hardcoded a priori. Each cluster node need only be running iSpace with the RiverMgr

service preloaded.

Execution begins when the control agent issues the moduleStart command to each

module, and ends when one of two conditions occur:

• The control agent issues moduleStop to every module; or,

• Every module reaches the “End of River” condition.

“End of River” (EOR) is indicated by a module receiving a null Water as input. This can

be triggered by a producer pushing a null Water down a reservoir towards a consumer,

or by some other event (such as the ModuleThread itself declaring an EOR condition).

A module may indicate to its surrounding ModuleThread that EOR has been reached by

throwing an EndOfRiverException from its doOperation method; this obviates the need

for an additional status value to be passed between a module and its controlling thread.

34

200

400

600

800

1000

1200

1400

1600

2 3 4 5 6 7 8

T
ot

al
 b

an
dw

id
th

, M
bp

s

Number of nodes

Optimal
Random Selection

Round-Robin Selection
Lottery Selection

0

200

400

600

800

1000

1200

0 1 2 3 4

T
ot

al
 b

an
dw

di
th

, M
B

yt
es

/s
ec

Number of nodes perturbed

Total bandwidth under perturbation
Ideal bandwidth

Figure 14: Tigris Distributed Queue performance.

6.4 Distributed Queue Performance

Figure 14 shows performance of the Tigris Distributed Queue implementations

under scaling and perturbation. The first benchmark demonstrates the three DQ imple-

mentations (round-robin, randomized, and lottery) as the number of nodes passing data

through the DQ is scaled up. The ViaReservoir reservoir type is used, which implements

a simple credit-based flow-control scheme over the VIA fast communications layer. End-

to-end peak bandwidth through a ViaReservoir is 46 MBytes/sec, or 75% of the peak

bandwidth of raw JaguarVia (which implements no flow-control or reliability).

In each case an equal number of nodes are sending and receiving data through the

DQ. The results show a 12% bandwidth loss (from the optimal case) in the 8-node case.

This is partially due to the DQ implementation itself; in each case, the receiving node selects

35

the upstream Reservoir from which to receive data in a round-robin manner. Although the

receive operation is non-blocking it does require the receiver to test for incoming data on each

upstream Reservoir until a packet arrives. We also believe that a portion of this bandwidth

loss is due the VIA implementation being used; as the number of active VIs increases, the

network interface must poll additional queues to test for incoming or outgoing packets.

The second benchmark tests the performance of the lottery DQ implementation

as receiving nodes are artificially loaded by adding a fixed delay to each iteration of the

receiving module’s doOperation() method. The total bandwidth in the unperturbed case

is 1181.58 MByte/second (4 nodes sending 8Kb packets at the maximum rate to 4 receivers

through the DQ), or 295.39 MByte/sec per node. Perturbation of a node limits its receive

bandwidth to 34.27 MByte/sec. The lottery DQ balances bandwidth automatically to nodes

which are receiving at a higher rate, so that when 3 out of 4 nodes are perturbed, 56% of

the total bandwidth can be achieved. Over 90% of the total bandwidth is obtained with

half of the nodes perturbed.

7 TigrisSort: A Sample Application

In order to evaluate the performance and flexibility of the low-level mechanisms

embodied in Jaguar, as well as the design of the Tigris system as a whole, we have imple-

mented TigrisSort, a parallel, disk-to-disk sorting benchmark. As with Datamation [9] and

NOWSort [1], external sorting is a good way to measure the memory, I/O, and communica-

tion performance of the complete system. While the existence of previous sorting results on

other systems yields a yardstick by which the Tigris system can be compared, we were also

interested in understanding the functional properties of the Tigris and Jaguar mechanisms

in the context of a “real application.”

36

Data
WriteRead

Data

ModulesDisks Modules Disks

Partition Sort

Figure 15: TigrisSort structure.

7.1 TigrisSort structure

The structure of TigrisSort is shown in Figure 15. Tigris sort implements a one-

pass, disk-to-disk parallel sort of 100-byte records each of which contain a 10-byte key. Data

is initially striped across the input disks with 5 megabytes of random data per node. The

application consists of two sets of nodes: partitioners and sorters. Partitioning nodes are

responsible for reading data from their local disk and partitioning it based on the record

key; the partition “buckets” from each node are transmitted to the sorting nodes which sort

the entire data set and write it to the local disk. This results in the sorted dataset being

striped by increasing key value across the sorting node disks.

Partitioning is implemented as a PartitionModuleThread class which continually

reads a buffer of data from a local disk file, partitions the buffer into a number of buckets

based on the key, and writes full buckets to the reservoir corresponding to that bucket.

All buckets are flushed to the communications channel when file data has been exhausted.

37

The actual partitioning of records is accomplished through a native method, bucketize(),

which takes as arguments a Jaguar external object corresponding to the input file buffer

and an array of external objects corresponding to each bucket. No data copying between

Java and C is necessary as both Java and native code can directly manipulate the contents

of the external objects.

Sorting is implemented as a SortModule contained within a LotteryModuleThread.

The module’s doOperation method saves a copy of each packet received until End-of-River

is signalled; at that time it collates every packet into a single buffer, sorts that buffer, and

writes the sorted data out to disk. Sorting is accomplished by a native method, doSort(),

which takes an array of external objects corresponding to the packets received during the

lifetime of the module. Again, no data copy between Java and C is necessary.

File I/O is implemented as a class, FilePSOBuffer, which causes a file to be

memory mapped (through the mmap system call) into the address space of the JVM and

exposed to the Java application as a PSO container. PSO operations on that container

correspond to disk reads and writes through the memory-mapped file. A special method is

provided, flush(), which causes the contents of the memory-mapped file to be flushed to

disk.

This approach has several limitations. One is that the operating system being used

(Linux 2.2.5) does not allow the buffer cache to be circumvented using memory-mapped

files. Another is that a particular write ordering cannot be enforced. Currently, Linux

does not provide a “raw disk” mechanism which provides these features. Rather than

concerning ourselves with these details, we assume that performance differences arising

because of them will be negligible. This seems to be reasonable: first, disk I/O is just

one component of the TigrisSort application, which does not appear to be disk-bandwidth

limited. Secondly, double-buffering of sort data in memory is not problematic with the

small (5 megabyte) per-node data partitions being dealt with. Third, write ordering is not

38

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6 7 8

T
ot

al
 s

or
t b

an
dw

id
th

, m
eg

ab
its

/s
ec

Total number of nodes

Tigris Sort bandwidth

nodes Amount Avg Avg sort Total
sorted time/node bw/node sort bw

2 5 MBytes 762 msec 52.49 Mbps 52.49 Mbps
4 10 MBytes 734.5 msec 51.725 Mbps 108.91 Mbps
6 20 MBytes 733 msec 51.82 Mbps 218.28 Mbps
8 40 MBytes 725 msec 52.40 Mbps 441.37 Mbps

Figure 16: TigrisSort performance results.

important for implementing parallel sort; it is sufficient to ensure that all disk writes have

completed.

7.2 TigrisSort performance

Figure 16 shows the performance of TigrisSort as the benchmark is scaled up from 2

to 8 nodes. In each case, half of the nodes are configured as partitioners, and half as sorters;

5 megabytes of data are partitioned or sorted per node. The total time to complete the sort

averaged 738 milliseconds; this implies that as more nodes are added to the application,

more data can be sorted in constant time. Given this result we feel that with careful

tuning, TigrisSort can compete with the current world-record holder of the Datamation

sort record, Millennium Sort [4], which was implemented on the same hardware platform

using Windows NT and C++. However, the dominant cost of Datamation sort on modern

systems is application startup; the results above do not include the cost of starting the

Tigris system itself. There is some question as to what should be included in the startup

39

measurements (e.g., for traditional implementations, the cost of cold-booting the operating

system is not measured).

8 Issues and Future Work

Our initial experience with Jaguar has indicated a number of possible avenues for

further research. While our prototype has provided encouraging results, we are interested

in the extension of the Jaguar approach to other application areas.

One major concern is protection. Currently, the user must trust Jaguar code

extensions (built-in to the JIT compiler as a set of bytecode-to-machine code transformation

rules) as much the JVM and the compiler itself. As discussed previously, however, this

is perhaps better than the use of arbitrary native methods, which have the same trust

requirements but far greater complexity in general.

However, it is still desirable to express extensions to the Java environment in a

way which enables certain properties to be verified, such as type-safety, bounded execution

time, and limited impact on the Java protection model. One approach would be to use a

higher-level language to represent Jaguar code mappings; typed assembly language [19] is

one candidate, but other languages are possible. The use of such a language should make

it possible to statically verify important properties about Jaguar’s code mappings — while

this may not permit entirely untrusted Java extensions, the goal is rather to raise the degree

of trustworthiness such that new code mappings do not have unexpected behavior.

Use of a limited extension language may have the secondary effect that it inher-

ently limits the set of actions which can be implemented as Jaguar code mappings. For

example, loops, unbounded branches, and ill-formed Java stack and object operations may

be restricted by the semantics of the language. This is desirable as it prevents the abuse

of the Jaguar code mapping technique to inline large amounts of low-level code as a single

Java primitive; the philosophy of Jaguar is to build in only the minimal set of extensions

40

needed to provide efficient Java access to some server resource.

Pre-Serialized Objects present several untapped opportunities. The first is to ex-

ploit PSOs to implement an efficient RPC and data-persistence mechanism for Java; com-

bining the use of JaguarVIA and PSOs should enable a high-performance RPC mechanism

for workstation clusters. We are also investigating the use of PSOs to implement distributed

data structures for cluster-based Internet services [13] and databases [14].

The prototype implementation of Pre-Serialized Objects has several important

limitations. The fact that cross-PSO references are only recoverable if both PSOs are

within the same “container” implies an informed programming model which makes this

limitation explicit. Currently, it is up to the programmer to arrange for multiple PSOs

to coreside in a single container if their object references are to be recovered. While it

is possible to remove this limitation, doing so would involve considerable complexity. We

believe that programmers who require the performance afforded by PSOs are willing to

go to the trouble to carefully maintain PSO relationships; we intend to test this claim by

developing applications which use this feature.

Tigris presented an opportunity to apply Jaguar to higher-level application de-

mands in the context of dynamic resource management in a cluster of workstations. Our

test configuration was limited, but we feel that initial results with Tigris and TigrisSort

are promising: it is possible to build powerful, system-level abstractions in Java with the

aid of Jaguar’s efficient I/O and communications primitives. Our future goal is to deploy

Tigris on a larger cluster and measure its performance with respect to the original C++

implementation of River. Implementing the River concepts in Java was greatly simplified

by the availability of the MultiSpace [12] cluster-management layer and the use RMI for

control.

Jaguar is a general solution for efficiently binding Java application code to hard-

ware resources. There are myriad potential uses for this mechanism, of which we have yet

41

explored but a few. Other interesting uses include:

• Fast access to devices such as raw disk I/O, framebuffers, and NUMA-style memory-

bus network interfaces;

• Transparent data persistence, using a mechanism similar to Pre-Serialized Objects.

Certain Java objects could be tagged as “persistent” — Jaguar code mappings could

directly implement retention of such objects’ state.

• Use of Jaguar code mappings to access shared memory segments in a multiprocessor

machine, or to implement distributed shared objects across a network.

Because Jaguar can be applied so generally, it is important to strike the right balance

between development of new Java primitives and applications which utilize those primitives.

Our claim is that it is undesirable to extend the Java environment arbitrarily; just what

the limits are should be brought out by further experimentation.

9 Conclusion

Jaguar bridges the gap between Java applications and the underlying server re-

sources that they wish to exploit. This is accomplished by translating Java bytecodes to

inlined machine code sequences at compile time; this ability to abstract system resources

as a Java object in this way provides both safety and high performance. The programming

model presented by Jaguar allows low-level system software to be coded almost entirely in

Java, aided by the minimal set of additional primitives required for direct access to hardware

resources.

Jaguar addresses two primary concerns which are essential for enabling high-

performance communications and I/O from Java:

1. Efficient, protected access to low-level system resources; and

42

2. Direct manipulation of memory regions external to the Java heap.

We have described JaguarVIA, an efficient Java binding to the VIA communica-

tions architecture using Jaguar code mappings to provide fast access to VIA queues, doorbell

registers, and specially-pinned data buffers. JaguarVIA obtains identical communication

performance to VIA as accessed from C. Pre-Serialized Objects are another application of

Jaguar code mappings which reduce the cost of Java object serialization by rewriting object

field references to directly access an externalized form of the object’s state.

Tigris is a high-level cluster programming model which relies heavily upon the

efficient communication and I/O mechanisms enabled by Jaguar. Tigris allows applications

to automatically balance their resource consumption across the cluster, through the use of

a dataflow programming model and Distributed Queues, a mechanism which balances data

movement between producers and consumers. TigrisSort, a sample application of Tigris,

demonstrates parallel disk-to-disk sorting performance which is competitive with that of

previous systems implemented in C or C++.

We believe that the approach taken by Jaguar can be extended in a number of

ways, both in terms of applications (such as applying Pre-Serialized Objects to implement

a fast RPC layer) as well as protection (by expressing Jaguar code transformations in a

higher-level language). Jaguar is a general solution which covers a wide range of application

demands on the Java environment. As such, it is important to consider the performance

and complexity tradeoffs of extending Java with new primitive operations in this way.

43

Bibliography

[1] Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, David E. Culler, Joseph M. Heller-

stein, and David A. Patterson. Searching for the sorting record: Experiences in tuning

NOW-Sort. In Proceedings of the 1998 Symposium on Parallel and Distributed Tools

(SPDT ’98), 1998.

[2] R. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. Culler, J. Hellerstein, D. Patterson,

and K. Yelick. Cluster I/O with River: Making the fast case common. In IOPADS

’99, 1999. http://www.cs.berkeley.edu/~remzi/Postscript/river.ps.

[3] P. Buonadonna, A. Geweke, and D. Culler. An implementation and analysis of the

Virtual Interface Architecture. In Proceedings of SC’98, November 1998.

[4] Philip Buonadonna, Joshua Coates, Spencer Low, and David E. Culler. Millennium

Sort: A Cluster-Based Application for Windows NT Using DCOM, River Primitives

and the Virtual Interface Architecture. In Proceedings of the 3rd USENIX Windows

NT Symposium, July 1999.

[5] Craig Chambers and David Ungar. Customization: Optimizing compiler technology

for SELF, a dynamically-typed object-oriented programming language. In Proceedings

of the SIGPLAN 1989 Conference on Programming Language Design and Implemen-

tation, June 1989.

44

[6] Chi-Chao Chang and Thorsten von Eicken. Interfacing Java with the virtual interface

architecture. In ACM Java Grande Conference 1999, June 1999.

[7] B. Chun, A. Mainwaring, and D. Culler. Virtual network transport protocols for

Myrinet. In Proceedings of Hot Interconncts V, August 1997.

[8] Jeffrey Dean. Whole-program optimization of object-oriented languages. In PhD thesis,

University of Washington, Seattle, Washington, 1996.

[9] Anon et. al. A measure of transaction processing power. In Datamation, 31(7): 112-

118, February 1985.

[10] Vladimir Getov, Susan Flynn-Hummel, and Sava Mintchev. High-performance parallel

programming in Java: Exploiting native libraries. In ACM 1998 Workshop on Java

for High-Performance Network Computing, 1998.

[11] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,

Reading, MA, 1996.

[12] S. Gribble, M. Welsh, D. Culler, and E. Brewer. Multispace: An evolutionary platform

for infrastructural services. In Proceedings of the 16th USENIX Annual Technical

Conference, Monterey, California, 1999.

[13] Steven Gribble. Simplifying Cluster-Based Internet Service Construction with Scalable

Distributed Data Structures. http://www.cs.berkeley.edu/~gribble/papers/-

quals/sdds-cluster.ppt.

[14] Joe Hellerstein, Eric Brewer, and Mike Franklin. Telegraph: A Universal System for

Information. http://db.cs.berkeley.edu/telegraph/.

[15] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal, and Aske Plaat.

An efficient implementation of Java’s Remote Method Invocation. In Proceedings of

PPoPP’99, May 1999.

45

[16] R. Martin, A. Vahdat, D. Culler, and T. Anderson. Effects of communication latency,

overhead, and bandwidth in a cluster architecture. In Proceedings of ISCA’97, June

1997.

[17] S. Matsuoka, H. Ogawa, K. Shimura, Y. Kimura, K. Hotta, and H. Takagi. OpenJIT:

A Reflective Java JIT Compiler. In Proc. of OOPSLA ’98, Workshop on Reflective

Programming in C++ and Java. http://openjit.is.titech.ac.jp/.

[18] José Moreira, Sam Midkiff, and Manish Gupta. From flop to megaflops: Java for

technical computing. In Proceedings of the 11th Workshop on Languages and Compilers

for Parallel Computing (LCPC’98), 1998. http://www.research.ibm.com/ninja/.

[19] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick

Smith, David Walker, Stephanie Weirich, , and Steve Zdancewic. TALx86: A realistic

typed assembly language. In 1999 ACM SIGPLAN Workshop on Compiler Support

for System Software, May 1999.

[20] Christian Nester, Michael Philippsen, and Bernhard Haumacher. A more efficient RMI

for Java. In ACM Java Grande Conference 1999, June 1999.

[21] Sun Microsystems Inc. Enterprise Java Beans Technology.

http://java.sun.com/products/ejb/.

[22] Sun Microsystems Inc. Java HotSpot Performance Engine.

http://java.sun.com/products/hotspot/index.html.

[23] Sun Microsystems Inc. Java Native Interface Specification.

http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html.

[24] Sun Microsystems Inc. Jini Connection Technology. http://www.sun.com/jini/.

[25] Sun Microsystems, Inc. The K Virtual Machine (KVM).

http://java.sun.com/products/kvm/.

46

[26] Sun Microsystems Labs. The Exact Virtual Machine (EVM).

http://www.sunlabs.com/research/java-topics/.

[27] Hiromitsu Takagi, Satoshi Matsuoka, Hidemoto Nakada, Satoshi Sekiguchi, Mitsuhisa

Satoh, and Umpei Nagashima. Ninflet: A migratable parallel objects framework using

Java. In ACM 1998 Workshop on Java for High-Performance Network Computing,

1998. http://www.cs.ucsb.edu/conferences/java98/papers/ninflet.pdf.

[28] The Java Grande Forum. The Java Grande Forum Charter.

http://www.javagrande.org/jgfcharter.html.

[29] The VIA Consortium. The Virtual Interface Architecture. http://www.viarch.org.

[30] D.A. Thurman. jPVM: The Java to PVM interface.

http://www.isye.gatech.edu/chmsr/JavaPVM.

[31] UC Berkeley Ninja Project. The UC Berkeley Ninja Project.

http://ninja.cs.berkeley.edu.

[32] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level network interface

for parallel and distributed computing. In Proceedings of the 15th Annual Symposium

on Operating System Principles, December 1995.

[33] M. Welsh, A. Basu, and T. von Eicken. Incorporating memory management into user-

level network interfaces. In Proceedings of Hot Interconnects V, August 1997.

[34] A. Woo, Z. Mao, and H. So. The Berkeley JAWS Project.

http://www.cs.berkeley.edu/~awoo/cs262/jaws.html.

[35] Peng Wu, Sam Midkiff, José Moreira, and Manish Gupta. Improving Java Performance

Through Semantic Inlining. http://www.research.ibm.com/ninja/.

