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Abstract

A growing class of sensor network applications require high
data rates and computationally-intensive node-level processing.
When deployed into environments where resources are limited
and variable, achieving good performance requires applications
to adjust their behavior as resource availability changes. This
paper presents Pixie, a new sensor network operating system
designed to facilitate the design of highly-efficient resource-
aware applications. By allowing applications to introspect on
resource availability and providing a rich interface for control-
ling resource usage, Pixie enables a broad range of adaptation
policies through a small set of core abstractions.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and Design; D.1 [Pro-
gramming Techniques]; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems

General Terms

Design

Keywords

Resource-Aware Programming, Resource Reservations, Wire-
less Sensor Networks

1 Introduction

Sensor networks are becoming increasingly important for
data-intensive applications that involve moderate to high
data rates, fine-grained timestamping of recorded signals,
and computationally-intensive processing. Examples of
such applications include seismic monitoring of earth-
quake zones and volcanoes [10], structural health moni-
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toring [11], and biomedical data capture using tiny, wear-
able sensors [7]. In contrast to the first generation of
sensor networks, which were focused on low-duty-cycle
data collection and aggregation, these new applications
demand much greater data fidelity and computational so-
phistication.

At the same time, wireless sensor platforms are inher-
ently resource-constrained in order to achieve low power
consumption. This leads to severe limitations of compu-
tational horsepower, memory capacity, and radio band-
width. The stringent application demands and resource
constraints require that applications be resource-aware to
realize efficient implementations.

In this paper we present Pixie, a new sensor node
operating system designed to overcome the resource-
management challenges facing sensor application devel-
opers. Pixie is focused on enabling the development of
resource-aware applications that receive feedback on and
react to changes in resource availability at runtime. We
argue that resource awareness is a fundamental require-
ment for sensor application development, especially in
contexts where the processing overheads, memory con-
sumption, and bandwidth usage exhibit wide variations
during the network’s lifetime. Pixie makes the following
contributions:

e A dataflow-oriented programming model that en-
ables a resource aware programming style, provid-
ing visibility and control over resource usage to ap-
plications;

o A fine-grained approach to resource reservation and
accounting, based on a small set of core abstrac-
tions; and

e A system architecture that supports interchangeable
and composable policies for resource management.

As an example, we consider a sensor network for mon-
itoring limb motion in a patient with Parkinson’s disease.
This system will experience fluctuations in radio band-
width (due to mobility), CPU demand (due to the nature
of the recorded data), and energy availability (due to the



limited battery charge). It is not generally possible to stat-
ically allocate sensor node resources to meet these vary-
ing demands; rather, the application must take an active
role in prioritizing which signals to store, process, and
transmit depending on current resource availability.

The Pixie architecture makes use of a staged con-
currency model [9] in which application logic is parti-
tioned into a dataflow graph of stages connected by re-
quest queues. This model allows the OS and application
to negotiate for resource allocations at a stage level, and
makes resource bottlenecks and request streams visible
to the OS. Likewise, Pixie provides stages with feedback
on available resources. This allows application logic to
make informed decisions about resource constraints, such
as decimating an input signal or degrading the amount of
processing performed in real time.

In this paper we describe the overall Pixie architec-
ture, present a motivating application, and show prelimi-
nary results demonstrating the system’s ability to support
resource-aware programming.

2 Motivation and Background

A growing number of sensor network applications re-
quire moderate to high data rates, high data fidelity, and
computationally-intensive processing. As resources in
this environment are limited and highly dynamic, appli-
cations must be aware of the runtime resource conditions
and be able to tune their behavior accordingly. To moti-
vate our architecture, we present an example application
requiring adaptation to bandwidth and energy availability.
Our group is investigating the use of wireless, wearable
sensors, capturing high-resolution data on limb motion
and muscle use to aid in the treatment of patients with
Parkinson’s disease. Studies involve a patient wearing up
to 10 tiny, wireless sensors on their limbs and torso, each
consisting of a triaxial accelerometer and gyroscope sam-
pled at 100 Hz allowing the patient’s activity level and
specific motion disorders to be characterized.

This system collects much more data than can be
transmitted over low bandwidth sensor radios, and the en-
ergy consumed by transmitting raw data has a substantial
impact on node lifetime. One way to save bandwidth is
to compute high-level features from the raw signals on
the nodes, such as the dominant frequency, peak ampli-
tude, and RMS, which are ultimately used for classifying
patient activity. Likewise, a simple “stillness filter” can
disable processing and transmissions altogether when a
given sensor node is not moving. Estimating the amount
of bandwidth available for data transmission requires es-
timating radio link conditions, which can be affected by
patient location, interference, and other factors. In the ex-
treme case, the sensor network can experience periods of
disconnection from the base station (due to patient mobil-
ity), which force data to be queued up for later delivery.

In this application, bandwidth and energy availability
cannot be predicted a priori. Therefore, achieving good
performance requires the application to adapt its behavior
when resource availability changes, for example, by vary-

ing the type of features computed by the sensor node as
well as the type and amount of data transmitted. Making
these adjustments properly requires weighing the relative
utility of each operation to the application against the cor-
responding cost in energy and bandwidth.

2.1 Related Work

Currently, achieving good resource efficiency from these
kinds of applications is still a tremendous challenge, and
current programming models do little to ease the burden.
Sensor network operating systems such as TinyOS [4],
Contiki [3], and MantisOS [1] provide resource manage-
ment only through low-level primitives for manipulating
hardware states. These systems require that applications
perform their own scheduling, bandwidth estimation, and
power management.

ECOSystem [12] and Odyssey [6] represent two ap-
proaches to managing resource adaptivity in mobile sys-
tems. While Odyssey provides callbacks to applications,
permitting them to respond to varying energy, bandwidth,
and computational load, ECOsystem does not require ap-
plication changes, automatically adjusting CPU schedul-
ing parameters to manage energy consumption. Be-
cause both ECOSystem and Odyssey interface to appli-
cations through the standard UNIX interfaces, they lack
the knowledge of the application structure our data-flow
model elicits and the control it exposes. Also, these sys-
tems are focused on very different hardware platforms
and application requirements than those found in sensor
networks.

Eon [8] is one of the first sensor network platforms
making resource-awareness a first-class programming
model primitive. Eon adapts application energy con-
sumption to availability by tuning dataflow paths and
timer rates in the application. Programmer control is
limited to providing multiple data paths with varying re-
source consumption, and no feedback on resource avail-
ability is delivered to the application. Eon does not ad-
dress the more general issue of adapting to CPU load,
memory pressure, or bandwidth fluctuations.

A significant difference between Eon and Pixie is that
Eon’s adaptation techniques effectively couple energy-
availability and output data quality in a way we believe
is limiting for sensor network applications. For example,
in the motion analysis case study discussed previously,
Eon would send all data down the high-fidelity path when
power was available, and all data down the low-fidelity
path when power was scarce, regardless of the corre-
sponding data utility. This can lead to inefficiency, since
resource-management decisions are not data-dependent.
Other systems, such as EnviroMic [5], adapt resource
consumption to input data but do so without considering
available energy. In contrast, Pixie is designed to allow
applications more control over where energy is used at
all resource availability levels. This allows applications
to make decisions incorporating both the value of sam-
pled data to the end-user and available resources.

The core challenge that we face is how to simulta-
neously enable resource-aware applications while min-



imizing programmer burden. Exposing a vast array of
low-level “knobs” gives programmers the most control,
but does little to simplify application design. On the
other hand, giving the OS sole responsibility for resource
management leads to inefficient use of already scarce re-
sources. In Pixie, our goal is to strike a balance between
these extremes and achieve near optimal resource us-
age while greatly easing the process of writing resource-
aware code.

3 Pixie Architecture

The Pixie architecture consists of three components. The
Application Dataflow layer implements application logic,
the Resource Manager allocates and manages resources
for the application, and the Scheduler schedules and exe-
cutes application stages. In the remainder of this section
we present the core architecture by describing each of the
three components in detail. To further illustrate the Pixie
architecture, we present concrete examples from our mo-
tion analysis application.

3.1 Application Dataflow

Pixie applications are composed as a dataflow graph of
stages. Stages process sensor data or perform low-level
operations such as sampling, radio communication, or
reading and writing to flash. Stages are connected by
edges that are connected to each stage’s input and output
ports. By default, each stage has a single input port and
single output port, although multiple ports may be used.
Edges themselves perform no queuing; a special queue
stage can be introduced into the stage graph if needed.

We settled on a dataflow programming model for sev-
eral reasons. First, dataflow maps well to typical sensor
network application design and provides greater struc-
ture than an arbitrary graph of software components (a la
NesC). Second, it provides a uniform interface between
application modules, which allows the OS to reason about
the application at a fairly fine level of granularity. The
dataflow model gives the OS both visibility and control
at a stage level over resource allocations, scheduling, and
the flow of data through the application. Third, dataflow
graphs naturally support interpositioning, which is a core
mechanism used by Pixie’s resource manager to affect
control over the application’s resource usage.

Figure 1 shows a simplified version of the motion anal-
ysis application running on top of Pixie. A sampling
component (parametrized by a sampling rate) feeds raw
sensor data into an activity detector, which determines
whether the signal contains motion; if not, the signal is
discarded. Otherwise raw data is passed to a series of
stages performing feature extraction, such as computing
peak amplitude (PA), root-mean-square (RMS), and sig-
nal decimation. In addition, raw signal data is written to
flash memory for later retrieval. Features are then deliv-
ered to a radio component for transmission to the base
station.

Application stages require resources to process data
from their input queue. We assume that each stage knows
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Figure 1: Simplified motion analysis architecture.

the type and amount of resources it needs in order to pro-
cess one item from its input queue. In general, a stage re-
quires a resource vector to complete its task. A resource
vector consists of a list of resource types and quantities.
For example, sending data over the radio requires both
energy and bandwidth resource units. A stage makes an
asynchronous resource request to Pixie specifying its re-
source vector. At a later time Pixie replies to the request
with either a granted or declined response. If the reply
is granted, the stage becomes runnable and can be sched-
uled for execution.

3.2 Resource Manager

One of the primary goals of Pixie is to manage resources
at a fine granularity level. In our dataflow model, stages
can perform a wide variety of tasks with different re-
source requirements. To facilitate resource management
at the stage level, the Pixie architecture provides the
mechanism in the form of tickets and allocators, and the
ability to express policies through brokers.

3.2.1 Tickets and allocators

A ticket represents a right to consume a given amount of a
resource type within a time window. A ticket is a tuple of
three values: resource type, quantity, and expiration time.
A ticket is allocated to a stage if the request is granted, at
which point the ticket is outstanding. A stage redeems
a ticket prior to using the associated resource; upon use,
the ticket is consumed. A stage may relinquish a ticket
if it has no further use for it. Finally, a ticket may be
revoked at any time, for example, if the resource is no
longer available.

Tickets have an expiration time for two reasons. First,
resource availability estimates might be accurate only
over a limited time horizon (as in the case of bandwidth
estimation). Second, ticket expiry makes accountability
easier to manage, since it bounds the number of outstand-
ing tickets. Furthermore, expiry prevents resource leak-
age (analogous to a garbage collection in programming
languages).

When a ticket is redeemed, if only a fraction of the



ticket’s resource quantity is used, the remainder is re-
turned to the system rather than the application. This sim-
plifies application design and reduces overhead because
it relieves the application from having to deal with tick-
ets containing small resource quantities. However, we do
provide a mechanism for the application to split a ticket
into two or more tickets when explicitly needed.

An allocator estimates the available quantity of a re-
source type and provides the mechanism for allocating
and tracking tickets. Allocators simply allocate tickets
upon request as long as the requested resources are avail-
able. It is up to applications (and brokers, as described
below) to implement policies for resource management
on top of the allocator.

As an example, consider the energy allocator from our
motion analysis application in Figure 1. The energy allo-
cator keeps track of available battery charge and allocates
requests as long as the battery is not completely drained.
We do not use explicit ticket allocation for low power
rudimentary operations and treat them as static constant
energy drain. However, we do explicitly allocate energy
for stages consuming substantially more than nominal
amounts, such as transmitting a radio packet, writing or
reading from flash, changing the CPU frequency (e.g., on
the iMote2), or performing a significant amount of com-
putation.

Another example is a bandwidth allocator that esti-
mates bandwidth availability over a short time window
(e.g. 10 sec) and allocates tickets based on this estimate.
Because bandwidth availability may change even more
frequently than the estimation window (in the extreme
case loosing connectivity), outgoing packets are queued
for transmission. The bandwidth allocator’s goal is to
provide a low queuing delay and minimize the number
of ticket revocations.

Finally, a flash storage allocator tracks the amount of
free storage and allocates flash storage grants. As with
energy and bandwidth, if there is available free storage,
the request is granted. A similar allocation mechanism is
used for memory.

3.2.2 Brokers

Tickets and allocators provide a low-level interface for
resource management. This design permits a wide range
of policies to be layered over this interface, although pro-
gramming at the ticket level can be difficult. In order
to simplify application design, we propose a resource
broker abstraction that implements resource management
policies on behalf of the application. A broker acts as an
intermediary between stages and allocators. Brokers are
entirely optional, however we anticipate that most appli-
cations will want to take advantage of them. Pixie pro-
vides a standard library of brokers from which an appli-
cation may choose.

For example, Pixie’s energy broker implements a pol-
icy for the system to achieve a target lifetime. In this
case, the energy broker will trickle the amount of energy
the application can use at a specific rate. Another bro-
ker may implement a greedy policy for bandwidth usage

in which it allows any packet to be transmitted as long
as there is available bandwidth. Another bandwidth bro-
ker may try to eliminate bursty transmissions by imple-
menting a leaky bucket approach. An even more sophis-
ticated bandwidth broker will negotiate bandwidth usage
with neighboring nodes in order to achieve fairness.

Brokers may be stacked or layered in various ways.
For example, in Figure 1 brokers are composed into a
hierarchy. The first level implements policies pertaining
to a single resource, such as for bandwidth, energy, and
flash storage. The second level implements an application
specific utility broker. In our application different data
features provide various degrees of information about the
signal and therefore are assigned different utility values.
For example, peak amplitude features provide more use-
ful information about the signal than RMS features, and
are therefore assigned a higher utility. Likewise, RMS
features are assigned a higher utility than decimated sam-
ples. When assigning resources to the feature stages, the
utility broker performs a first fit bin packing ordered by
stage priority.

3.3 Scheduler

The scheduler is responsible for scheduling and running
stages. Due to memory limitations on typical sensor node
platforms, we assume a single thread of execution and a
non-preemptive scheduling policy, avoiding the need to
maintain potentially large stacks across context switches.

In Pixie, scheduling decisions are made based on the
scheduling policy used and if a stage is blocking. For
example, a stage may block if it was not granted the re-
quested resources. At a later time, the stage may become
unblocked by receiving a signal from the resource man-
ager with the requested resource grant.

Pixie admits a wide range of CPU scheduling policies.
Our default implementation performs a simple depth-
first traversal of the stage graph, directly invoking down-
stream stages using a procedure call, thereby minimizing
cross-stage overhead. Traversals are initiated at source
stages, such as sampling or timers, and terminate at sink
stages which either do not push data to an output port,
or have no output ports. A queue stage acts as both a
sink stage and a source stage; the queue initiates graph
traversals downstream when the stage is non-empty. Each
source stage has an associated priority, which may be al-
tered at runtime. The scheduler initiates a graph traversal
at the source stage with the highest priority, and ties are
broken using round-robin.

4 Preliminary Results

This section describes a preliminary implementation of
Pixie in the context of a simplified version of our motion
analysis application presented in Section 3. Due to lack
of space, we focus on presenting initial results demon-
strating Pixie’s effectiveness in enabling resource aware-
ness, by allowing the application to adapt to varying radio
bandwidth availability.

We have implemented a prototype of Pixie in NesC
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on the SHIMMER [7] sensor node platform. SHIMMER
has a TI MSP430 microcontroller, CC2420 802.15.4 ra-
dio, 2 GB microSD flash, triaxial accelerometer and gyro-
scope sensors. Each node samples six channels of sensor
data at 100 Hz and computes peak amplitude and RMS
features. Nodes also transmit a 20 Hz decimation of the
raw signal to aid calibration and visualization.

When bandwidth is constrained, the application’s goal
is to prioritize transmission of the most important data
to the base station. We implement a bandwidth alloca-
tor that periodically estimates available bandwidth using
the expected transmission count (ETX) metric [2]. To ex-
press the value of data types, we assign each data product
a utility score: 20 for peak amplitude, 10 for RMS and
1 for decimated samples. We use the utility broker de-
scribed in Section 3.2.2 to allocate bandwidth to stages.

In order to evaluate the effectiveness of bandwidth
management, we compare adaptive and non-adaptive ver-
sions of the motion analysis application. The two ver-
sions of the application are identical except that the non-
adaptive version does not use a utility broker to prioritize
transmissions. Instead, transmissions are scheduled in a
round robin fashion. To facilitate experimentation, we
artificially constrain available bandwidth at each node.
Pixie’s bandwidth allocator measures the altered capac-
ity using the ETX metric.

As our comparison metric, we define aggregate util-
ity as the sum of the utility values for all data received
by the base station. Figure 2 shows the aggregate utility,
normalized to the maximum achievable value under each
bandwidth capacity setting. As the figure shows, the two
versions are equivalent when there is sufficient bandwidth
to send every packet. However, when bandwidth is con-
strained, the adaptive version transmits only high utility
data while the non-adaptive version does not distinguish
between data types. This behavior is straightforward to
achieve with Pixie by inserting a data-aware bandwidth
broker into the application.

5 Conclusions

We are driving Pixie’s design through close collabora-
tion with domain scientists, who demand an easier ap-
proach to resource management than afforded by exist-
ing systems. We argue that resource management is the
key barrier to adoption of wireless sensor networks in
many applications, since constrained resources underpin
nearly all aspects of the programming model, including
concurrency, memory management, and radio communi-
cation. Further, we claim that no OS is completely ca-
pable of managing resources transparently to the applica-
tion: the application must be involved in the process of
adapting to changing conditions, either through direct re-
source awareness, or by specifying policies that enable
the system to make the right decisions. Although our
results are preliminary, we have demonstrated that Pixie
provides an effective platform for adapting to varying ra-
dio bandwidth. Based on our early experience, we believe
that the Pixie design also supports a range of policies for
managing CPU, memory, and energy for adaptive sensor
network applications.
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