
Resource Aware Programming in the Pixie OS

Konrad Lorincz, Bor-rong Chen, Jason Waterman, Geoff Werner-Allen, and Matt Welsh
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

{konrad,brchen,waterman,werner,mdw}@eecs.harvard.edu

ABSTRACT
This paper presents Pixie, a new sensor node operating system de-
signed to support the needs of data-intensive applications. These
applications, which include high-resolution monitoring of acoustic,
seismic, acceleration, and other signals, involve high data rates and
extensive in-network processing. Given the fundamentally resource-
limited nature of sensor networks, a pressing concern for such ap-
plications is their ability to receive feedback on, and adapt their
behavior to, fluctuations in both resource availability and load.

The Pixie OS is based on a dataflow programming model based
on the concept of resource tickets, a core abstraction for represent-
ing resource availability and reservations. By giving the system vis-
ibility and fine-grained control over resource management, a broad
range of policies can be implemented. To shield application pro-
grammers from the burden of managing these details, Pixie pro-
vides a suite of resource brokers, which mediate between low-level
physical resources and higher-level application demands. Pixie is
implemented in NesC and supports limited backwards compatibil-
ity with TinyOS.

We describe Pixie in the context of two applications: limb mo-
tion analysis for patients undergoing treatment for motion disor-
ders, and acoustic target detection using a network of microphones.
We present a range of experiments demonstrating Pixie’s ability to
accurately account for resource availability at runtime and enable a
range of both generic and application-specific adaptations.

Categories and Subject Descriptors
D.4.7 [Operating Systems]; D.1 [Programming Techniques]; C.3
[Special-Purpose and Application-Based Systems]: Real-time
and embedded systems

General Terms
Design

Keywords
Resource-Aware Programming, Resource Reservations, Wireless
Sensor Networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’08, November 5–7, 2008, Raleigh, North Carolina, USA.
Copyright 2008 ACM 978-1-59593-990-6/08/11 ...$5.00.

1. INTRODUCTION
Resources in sensor networks are precious. This is especially

true in application domains where data rates and computational
demands can outstrip the limited capabilities of low-power sensor
nodes. Tuning a sensor network application to operate efficiently,
especially given fluctuations in resource availability and load, is a
difficult challenge, often involving cross-layer adjustments to duty
cycle, sampling rates, computational fidelity, and communication
patterns. Existing sensor network operating systems provide little
help in this regard, exposing a wide range of low-level primitives
for resource management, but little guidance in terms of how those
primitives should be used in a holistic fashion.

We need a better approach to programming sensor networks that
gives applications awareness of resource availability, as well as the
ability to adapt their behavior in intelligent ways. We argue that
to a large extent, adaptivity will be closely tied to the application
logic, as it involves complex tradeoffs between lifetime, bandwidth
usage, and data quality. In general, it is not possible to automate
this process for all applications. Rather, our goal is to provide a
programming model that gives developers a much more intuitive
set of tools for managing resources within their applications.

In this paper, we describe Pixie, a new operating system for
sensor nodes that enables resource-aware programming. In Pixie,
a sensor node has direct knowledge of available resources, such
as energy, radio bandwidth, and storage space, and can control
resource consumption at a fine granularity. There are three key
components of the Pixie system. The first is a dataflow program-
ming model that structures applications as a graph of interconnected
stages, similar to systems such as Click [30], Eon [48], and Flask
[37]. The use of a dataflow model gives the operating system both
visibility and control over the application’s resource usage. Second,
Pixie uses the concept of resource tickets, an abstraction represent-
ing a discrete allocation of physical resources. Tickets form the
basis for resource awareness and control in Pixie. The final com-
ponent is a set of resource brokers, reusable software modules that
encode policies for resource management. An application can del-
egate its resource management decisions to an appropriate broker
that handles the low-level details of resource ticket allocation.

In any adaptive system, one of the key questions that arises is
whether an application should be responsible for its own resource
management, or whether this process can be automated. On one
hand, application-aware adaptation, such as that supported by Odys-
sey [41], offers the most flexibility and efficiency, but may involve
a great deal of programmer burden. Systems such as Eon [48] and
ECOsystem [56] shield applications from this burden, but tie ap-
plications to a specific set of policies. Pixie strikes a balance by
enabling resource awareness at the application level without requir-
ing it. Furthermore, Pixie decouples resource management mecha-

nisms, provided by resource tickets, from the policies, which may
be implemented within the application or provided by resource bro-
kers. In this way, Pixie applications can consist of a mixture of
“resource-aware” and “naïve” components.

We explore Pixie’s design in the context of two demanding ap-
plications. The first involves the use of wearable sensors for limb
motion analysis, capturing high-resolution accelerometer and gyro-
scope data to aid in the rehabilitation of patients with Parkinson’s
Disease or recovering from a stroke [43]. The second application
involves a network of sensors for acoustic target detection, such as
that used in wildlife monitoring [1], shooter localization [47], and
vehicle tracking [23]. These two applications are representative of
a broad class of resource-intensive, adaptive systems that Pixie is
intended to support.

Pixie makes the following contributions. First, Pixie enables re-
source awareness by making resources a first-class entity in the pro-
gramming model. We present the design and architecture of Pixie
as well as a prototype implementation running on the TMote Sky
and iMote2 sensor platforms. Second, Pixie incorporates efficient
runtime estimation of available resources, such as energy and radio
bandwidth. Our approach to energy usage estimation is based on
a simple software model and performs accurate energy estimation
on standard mote platforms with no additional hardware support.
Third, Pixie’s resource broker abstraction enables a broad range
of reusable adaptation strategies, including adaptive duty cycling,
varying computational fidelity, and tuning radio bandwidth, while
shielding application code from the details of low-level resource
management. Finally, we present a detailed evaluation of Pixie in
the context of two applications, demonstrating that Pixie achieves
high efficiency, accurate resource estimation, and effective adap-
tivity across a range of energy and bandwidth constraints. We first
introduced the Pixie design in an earlier position paper [34]. In this
paper, we build upon our earlier work and provide a much more
detailed description of the Pixie architecture and implementation,
as well as a thorough evaluation in the context of two target appli-
cations.

The rest of the paper is organized as follows. In Section 2, we
lay out the motivation and background for the Pixie approach. We
describe Pixie’s architecture in detail in Section 3, and present our
prototype implementation in Section 4. Section 5 describes our two
example applications and Section 6 presents results from our eval-
uation. Section 7 summarizes related work, and Section 8 presents
future work and concludes.

2. BACKGROUND AND MOTIVATION
An increasing number of wireless sensor network applications

involve high data rates, high data fidelity requirements, and com-
putationally intensive processing. Examples of applications in this
class include vibration monitoring of bridges and buildings [7, 8,
42]; seismic monitoring of fault zones and volcanoes [25, 53];
acoustic monitoring of animal habitats [1, 35]; and body sensor
networks for monitoring activity and movement [9, 16, 43].

These applications present several unique challenges to applica-
tion design. First, they involve potentially high load on compu-
tational and communication resources, and must therefore be ex-
tremely resource-efficient. Second, these applications exhibit load
fluctuations in response to environmental stimuli: they cannot as-
sume simple periodic operation. Third, resource availability may
fluctuate as well, due to changes in RF interference and conges-
tion, node mobility, and energy drain. These challenges point to
the need for a programming abstractions to help application devel-
opers achieve the best use of limited sensor node capabilities under
variable load and resource conditions.

To a large extent, the sensor networking community has not yet
required general-purpose solutions bridging the gap between appli-
cation demands and available resources: many applications have
been designed to match sensor node resource constraints without
requiring extensive runtime adaptation. Traditional sensor network
applications are designed to operate at low data rates and as a result
are “embarrassingly periodic” in nature, largely reducing resource
management to a static problem.

We believe that in order to open up sensor networks to non-
experts wishing to leverage the technology for their applications,
we must do something about this problem and offer a programming
model that treats resources as a first-class programming primitive.
Currently, few tools exist to reason about resource usage in sensor
network applications at a high level. Operating systems such as
TinyOS [24], SOS [22], Contiki [11], and Mantis OS [6] provide
low-level mechanisms for controlling hardware states, but do little
to simplify resource management at the application level. Nano-
RK [14] provides real-time guarantees through static resource reser-
vations based on offline estimates of CPU time, packet rates, and
sampling intervals used by an application. However, this approach
fails to address dynamically-varying load or fluctuations in resource
availability that arise at runtime.

The conventional structure used to build sensor network applica-
tions makes it difficult to automate many aspects of resource man-
agement. While component-oriented design, such as that used in
TinyOS and NesC [17], facilitates composition and reuse, any so-
phisticated application becomes a tangled “web of components”
that makes it difficult to inspect or tune resource usage. A simi-
lar lack of transparency pervades the conventional threading model
(adopted by Mantis, for example), giving the OS little control over
application behavior.

We argue that these problems demand a rethinking of the funda-
mental OS structure and programming interfaces used to manage
resources. In this paper, we propose a new operating system, called
Pixie, that combines the use of a dataflow-oriented programming
model as well as a rich set of interfaces for observing and react-
ing to the state of resources on the node. Pixie is implemented in
NesC and makes heavy use of TinyOS’ drivers, and retains limited
backwards-compatibility with legacy TinyOS code. We emphasize
that Pixie is focused on resource management at the individual sen-
sor node level, not the network as a whole. We believe that the Pixie
OS exposes enough information and control to permit applications
to coordinate resource-management decisions across the network.

Unlike systems such as Eon [48], which attempts to automate
resource management decisions, in Pixie our philosophy is to give
applications direct visibility and control over resource usage at run-
time should they need it. This is provided in the form of a resource
ticket abstraction that represents the right to use a given quantum of
resources, and a set of resource allocators that manage each physi-
cal resource in the system. In cases where applications do not wish
to deal with this level of detail, we introduce resource brokers that
provide commonly-used, reusable policies that can be linked into
the application.

There is an inherent tradeoff between programmer burden and ef-
ficiency in the face of changing resource conditions and load. Our
challenge is to strike the right balance along this spectrum, permit-
ting application developers to build reusable components that will
operate well under a range of conditions, while limiting the amount
of complexity and low-level details that application code must man-
age. We recognize that this approach may not be as resource-
efficient as a carefully hand-coded application, but it should be sig-
nificantly easier to program and far more intuitive to reason about.

3. PIXIE ARCHITECTURE
An overview of the Pixie architecture is shown in Figure 1. In

Pixie, applications are structured as a dataflow graph of stages,
where each stage represents some unit of computation or I/O. De-
composing the application into a stage graph gives the OS both vis-
ibility into and control over resource demands and data flow within
the application. Application stages interact with resource brokers,
which are specialized stages responsible for providing feedback on
and arbitrating access to resources, such as energy, radio band-
width, or flash storage. Pixie provides a toolkit of brokers im-
plementing different resource-management policies. At the low-
est level, Pixie’s resource allocators manage access to physical re-
sources and estimate resource availability at runtime.

Central to the Pixie design is the concept of a resource ticket,
which represents a bounded-duration right to consume a given quan-
tity of a given resource. Tickets are the basic “currency” exchanged
by application code and brokers, enabling both resource awareness
and compositional resource management policies.

Pixie is designed for resource-limited sensor nodes (such as the
TMote Sky, MicaZ, and iMote2 platforms), in which a single appli-
cation runs on the node at a time. Further, we assume that applica-
tion code is cooperative and does not attempt to undermine the OS’s
resource management abstractions: Pixie’s role is advisory rather
than coercive. In the following sections, we detail each aspect of
the Pixie design.

3.1 Dataflow programming model
Pixie applications are structured as a dataflow graph of stages,

using a model similar to Click [30]. Stages are connected by edges
that are linked to each stage’s input and output ports. By default,
each stage has a single input port and single output port, although
multiple ports may be used. Edges themselves perform no queu-
ing; a special queue stage can be introduced into the stage graph if
needed.

We chose to adopt this model in Pixie for several reasons. First,
dataflow maps well onto the structure of many sensor network ap-
plications, as demonstrated by systems such as Eon [48], Tenet [19],
WaveScope [40], and Flask [37]. Second, compared to a conven-
tional process model or the TinyOS component model, dataflow
graphs represent data and resource dependencies of individual com-
ponents explicitly, giving the OS greater visibility and control over
the application’s behavior. Third, dataflow graphs naturally support
interpositioning, which (as described below) is a core mechanism
used by Pixie’s resource brokers to affect control over the applica-
tion’s resource usage.

Memory model: In Pixie, memory objects are represented as
memrefs which represent a dynamically-allocated, contiguous re-
gion of memory, along with a reference count. Memrefs are the
basic data type carried by edges between stages. Memrefs are un-
typed and stages producing and consuming memrefs must agree
on their format. When a stage is scheduled, it is passed a memref
(from any one of its input ports) as input. Pushing a memref onto
an output port increments the refcount for each stage receiving the
memref. A stage must explicitly release a memref, decrementing
its reference count, if it no longer wishes to access the memref (e.g.,
because it has passed it downstream or consumed it). Deallocation
is performed implicitly when a memref’s reference count drops to
zero.

Scheduling: The Pixie dataflow model admits a range of schedul-
ing algorithms and techniques. Our default implementation per-
forms a simple depth-first traversal of the stage graph, directly in-
voking downstream stages using a procedure call, thereby minimiz-
ing cross-stage overhead. Traversals are initiated at source stages,

such as sampling or timers, and terminate at sink stages which ei-
ther do not push data to an output port, or have no output ports.
A queue stage acts as both a sink stage and a source stage; the
queue initiates graph traversals downstream when the stage is non-
empty. Each source stage has an associated priority, which may
be altered at runtime. The scheduler initiates a graph traversal at
the source stage with the highest priority, and ties are broken using
round-robin.

A stage may indicate to the scheduler that it is blocked, for ex-
ample, due to lack of needed resources or pending an asynchronous
I/O operation. The stage may later signal that it is unblocked.
Blocking a stage causes all upstream stages in the stage graph to
be implicitly blocked, until a source stage is reached. To prevent
blocking from stalling upstream stages, applications generally in-
troduce a queue upstream from the blocking point, allowing in-
put data to accumulate at that point in the stage graph. For exam-
ple, Pixie’s radio transmission stage (which blocks when it is busy
transmitting a packet and waiting for an acknowledgment) provides
a queue that accumulates outgoing packets.

Example: Figure 1 shows an example Pixie application, closely
related to the motion-analysis system described in Section 5. The
sampling component serves as a source stage, producing memrefs
containing six channels of accelerometer and gyroscope data. The
data is passed to an activity filter stage, which drops data when no
motion is detected. The raw data is logged by the flash I/O stage.
The bandwidth broker, as described below, sends data to one or
more feature extraction stages that process the signals, based on
the current estimate of radio bandwidth availability. Each feature
extraction stage transmits data to the base station through the radio
transmission stage. The radio and flash stages may block while
performing a transmission or I/O operation, so they require a queue
for buffering incoming data. The use of resource allocators and
tickets shown in the figure are described in the next section.

3.2 Resource tickets
A resource ticket is the basic abstraction for resource manage-

ment in Pixie. A ticket 〈R, c, te〉 represents a right to consume up
to c units of resource R until an expiry time te. Tickets are created
by resource allocators, one for each physical resource managed by
the operating system, and are typically handled by resource bro-
kers, described in Section 3.4 below. Tickets can be thought of
as the resource “currency” managed by Pixie, somewhat related to
resource containers [5] and the ticket abstraction used in lottery
scheduling [52]. By basing all aspects of resource management on
this single abstraction, Pixie permits a great deal of flexibility and
composition of resource-management policies.

Tickets can only be generated by the corresponding resource al-
locator for a given resource, as described below. Tickets support
several basic operations: redeem, forfeit, revoke, join, and split.
A ticket is redeemed by a stage when it requires resources to per-
form an operation; for example, sending a radio packet requires
a corresponding bandwidth ticket. Forfeiting a ticket informs the
system that the resources are no longer needed. The system may
revoke a ticket on or before its expiry time te; note that the expiry
time is therefore a hint and not a guarantee as to the ticket’s va-
lidity. Multiple tickets of the same resource can be joined into a
single ticket. Joining two tickets retains the earlier of the two ex-
piry times. Splitting a ticket likewise creates two tickets with the
corresponding amount of resource, with identical expiry times.

An example of an energy ticket is 〈energy , 700mJ, 10sec〉, while
a radio bandwidth ticket might be 〈bandwidth, 5packets, 5sec〉.
Likewise, a storage ticket gives the right to store a certain number
of bytes in flash, while a memory ticket gives the right to allocate a

Energy allocator

Energy
estimator

Memory allocator

Bandwidth
tickets

Energy tickets
Memory tickets

Storage
tickets

Peak
amplitude

Dominant
frequency

Auto-
correlation

Activity
filterSampling Bandwidth

broker

Storage
allocatorFlash I/O

Store raw
data

Pixie OS

Heap

RMS

Bandwidth
allocatorRadio

Link

Bandwidth
estimator

Figure 1: An example Pixie application for limb monitoring using wearable sensors. Stages are represented as unshaded boxes and contain application-
specific code. Resource allocators and brokers are components of the Pixie OS. Solid arrows represent data flow; dashed arrows represent resource ticket
allocations. For clarity, not all components and arrows are shown in the figure.

memref of a given size.
Tickets in Pixie decouple resource reservation from usage. This

permits applications to make requests in advance of the need for a
given resource, and take action based on the amount of resources
that are available. For example, given a ticket for a certain amount
of energy, the application can decide whether to perform a high-
energy operation (such as sampling an expensive sensor) or a lower-
energy alternative.

The granularity of the resources represented by a ticket, as well
as the expiry time, depends on the physical resource involved. While
radio bandwidth may fluctuate on short time scales (orders of sec-
onds), energy and storage availability tend to be more stable. By
limiting the amount of resources and expiry time in a ticket, the
system can bound the amount of outstanding resource credit it is
extending to applications. Ticket revocation permits the system to
reclaim unused resources over time.

In our current design, resource tickets are not required for CPU
usage; we rely instead on priority-driven scheduling to manage ac-
cess to the CPU. In part, this is because requesting and managing
tickets itself requires computation, and accounting for all CPU us-
age by a sensor node is extremely complex. We require applications
to request energy tickets for performing computationally-intensive
operations, such as those that would involve increasing the CPU
clock frequency on platforms that support this operation.

In many cases, it is useful to couple a resource ticket with a data
object that requires the ticket for its processing. Each memref can
have an optional ticket attached to it that is passed transparently
along with the object. The ticket may of course be split and re-
deemed as the data object flows through the stage graph. In this
way, a Pixie stage graph represents flow of both data and resource
allocations.

3.3 Resource allocators
Each physical resource managed by Pixie has a corresponding

resource allocator that performs three functions: (1) Estimating
the amount of available resource at runtime; (2) Allocating tickets
for that resource on demand; and (3) Enforcing ticket redemptions.
We currently employ resource allocators for radio, flash storage,
energy, and memory, although the model can be readily extended
to other physical resources. In our current model, sensor data ac-

quisition is handled by the energy allocator.
Resource allocators simply mediate access to the physical re-

source that they control; they do not impose any policy on those
allocations. Allocators perform first-come, first-served allocation
of tickets as long as the requested resources are available. Alloca-
tors support two basic operations: query and request. The query
operation allows a client to determine how much resource is cur-
rently available, such as the number of joules in the battery or free
storage space in the flash. request(c, te) requests a ticket for c units
of the resource with an expiry time of te. The allocator will reject
the request if c exceeds the amount of available resource, or if te
exceeds the allocator’s estimation horizon, described below.

Allocators are also responsible for enforcing allocations, by re-
quiring a valid ticket in order to consume the underlying resource.
All direct access to a physical resource is performed by the cor-
responding allocator: for example, the Pixie storage allocator is
responsible for performing all flash I/O.

Resource allocators may be layered. For example, both radio
and flash I/O consume energy as well, and require a corresponding
energy ticket. In this case, the radio and storage allocators are re-
sponsible for acquiring, and redeeming, energy tickets in order to
perform an I/O operation. This implies that requesting, say, a stor-
age ticket involves an (implicit) request for an energy ticket, and
that the request may be denied due to lack of underlying energy
availability, even if storage is plentiful.

An important function of allocators is estimation of the available
resources at runtime. Due to the volatility of resource availability
over time, each allocator has an estimation horizon that represents
its ability to forecast future availability. For storage and memory,
the horizon is effectively infinite. For energy, the horizon can be
long (hours or days) depending on battery stability, estimation ac-
curacy, and whether the sensor node can be recharged in the field
(say by solar power). Radio bandwidth estimation has a short hori-
zon, on the order of a few seconds.

3.3.1 Storage and memory allocators
The simplest resource allocators deal with flash storage and mem-

ory. The memory allocator maintains a fixed-size heap (allocated at
boot time), while the storage allocator manages the node’s flash, the
size of which is also known at boot time. Requesting a storage or

memory ticket reserves the corresponding amount of storage/mem-
ory until the ticket is redeemed or revoked. In the case of memory,
allocating a memref is equivalent to atomically requesting and re-
deeming a corresponding memory ticket.

3.3.2 Energy allocator
Pixie’s energy allocator performs runtime estimation of the sen-

sor node’s battery capacity and expected node lifetime. Energy me-
tering can be performed using hardware support [13, 48, 50], with
varying degrees of accuracy and overhead. In the absence of hard-
ware support, Pixie employs a software-based metering technique
that tracks the state of each hardware device on the sensor node
and applies a model of the energy requirement for each hardware
state. The energy consumption for each hardware component is
combined to produce an estimate of the overall power consump-
tion of the sensor node. Our approach is similar to that used in
Contiki [12] and the PowerTOSSIM [46] simulator.

The Pixie energy metering component uses a set of hooks into
low-level system components to track the energy state of each hard-
ware device. For example, the energy meter receives upcalls from
the CC2420 radio stack when the radio state switches between low-
power idling, listening, and transmission modes. Likewise, upcalls
are made from the flash I/O and CPU frequency scaling compo-
nents to track their hardware state. Each state change triggers an
update to the energy meter’s estimate of the total energy usage. We
use an empirical model of the current draw of each hardware device
in different states, based on detailed measurements of the TMote
Sky and iMote2 platforms. Our model is similar to that presented
in [29].

Tracking CPU energy usage is somewhat more challenging, since
we do not want to introduce expensive instrumentation into every
task and interrupt handler execution. Instead, we assume a con-
servative, constant current draw for the CPU based on its current
power setting. On MSP430-based platforms, CPU consumption
averages about 1.9 mA. On XScale-based platforms (such as the
iMote2) that support dynamic voltage scaling, we assume a con-
stant current draw for each supported frequency level, and track
frequency state changes, which are controlled by the energy alloca-
tor.

3.3.3 Bandwidth allocator
Pixie provides an abstract radio link layer that is intended to

support a uniform interface for radio transmission and reception
over different radio technologies and MAC layers, a goal shared
by SP [45]. Our current prototype uses the default TinyOS 2.x
CSMA MAC over 802.15.4, and supports reliable transmission us-
ing ARQ. Pixie uses low-power listening at the MAC layer [44].
Applications can control the listening duty cycle through the Pixie
link layer interface, allowing for energy savings at the cost of addi-
tional packet delay or loss.

In sensor networks involving a nontrivial amount of radio com-
munication, it is often beneficial to estimate the effective link ca-
pacity, allowing the application to adapt its behavior to available
bandwidth. Given that link capacity can be affected by many fac-
tors, including RF interference, congestion, and node mobility, giv-
ing applications effective feedback on the state of the link for ca-
pacity estimation is very challenging. The problem of link esti-
mation has been extensively studied [10, 49, 54], usually with the
goal of picking the “best” link among several for the purpose of
selecting an optimal routing path.

We observe that if we treat the link layer as a “black box,” the
problem reduces to estimating the maximum packet injection rate,
defined as the rate at which packets can be pushed to the link layer

without overflowing its bounded packet queue. This approach ab-
stracts away the dynamics of the link layer’s behavior and allows
the application to only consider the rate at which it should generate
outbound packets.

Pixie’s bandwidth allocator estimates link capacity by measur-
ing the mean packet transmission delay td, defined as the time for
the link layer to transmit a packet (including MAC, transmission
time, ACK reception, and any retransmissions), until an ACK is
received or the ARQ threshold is reached. Note that this is a pas-
sive measurement that does not generate additional traffic, although
it assumes that the application is periodically transmitting enough
packets to keep the capacity estimate up to date. Although trans-
mission delay is a function of the packet size, in a lossy environ-
ment we expect MAC and retransmission delays to dominate; we
conservatively estimate td assuming large fixed-length packets.

To avoid overflowing the transmission packet queue, the applica-
tion should avoid generating packets at a rate faster than 1/td. For
a given time window δ, the bandwidth allocator will issue no more
than δ/td packet’s worth of bandwidth tickets, each with an expiry
time of δ sec. We have experimented with different time windows
and find that δ = 1–5 sec works well in mobile settings with a high
degree of link variation.

3.3.4 Estimating demand
To use resource tickets effectively, applications must estimate

their demand for resources in order to request the appropriate ticket
amounts. A full treatment of this problem is beyond the scope
of this paper. Fortunately, resource demand estimation is a well-
studied problem in the embedded, real-time, and mobile systems
literature. In many cases, conservative estimates can be determined
offline through simulation [31, 46] or code analysis [14, 38]. De-
mand can also be estimated by measuring the application’s resource
usage at runtime [15, 33, 48, 55]. It is worth noting that many
common operations, such as transmitting a radio packet, reading
or writing a flash block, or sampling a sensor typically consume a
constant amount of energy; Pixie provides a set of macros to repre-
sent these amounts when requesting energy tickets. Estimating the
CPU usage (and thereby energy requirements) of computationally-
demanding stages can be performed using conventional offline pro-
filing techniques. Also, in our experience it is not difficult for appli-
cations to estimate bandwidth and storage needs. While we recog-
nize that demand estimation is not a trivial problem, our current ap-
proach assumes that one or more existing techniques are employed
by application developers.

3.4 Resource brokers
Resource allocators and tickets provide a powerful, yet low-level

interface to resource management. While this approach permits a
great deal of flexibility, it is often cumbersome for applications to
operate at this level. For this reason, Pixie introduces the concept
of resource brokers that provide a high-level interface for medi-
ating between application needs and underlying resource alloca-
tions. A resource broker is a specialized Pixie stage that requests
and manages resource tickets on behalf of application code accord-
ing to some policy. Brokers need not expose a uniform API, and
indeed the interaction between the broker and application code is
generally broker-specific. The use of brokers is entirely optional;
applications are always able to circumvent them should they wish
to perform allocations themselves.

Since brokers are stages, they can interpose directly on the ap-
plication’s dataflow path. As a result, the broker can inspect, redi-
rect, discard, or refactor data flowing through it. As an example,
consider a “switch” broker that directs data to one of a set of down-

stream stages based on energy or bandwidth availability. Another
type of broker might decimate or degrade input data to match re-
source demands to current availability.

Pixie includes a small toolbox of standard brokers that we expect
will find use in a range of applications. Developers are also free
to implement their own brokers, thereby encapsulating resource-
management decisions into a single component. Some of our stan-
dard brokers are described below.

Energy broker: The default energy broker doles out energy tick-
ets according to a schedule that attempts to meet a given lifetime
target for the sensor node. Each application stage registers its de-
sire for energy quanta with the broker, and specifies its priority for
energy allocation. Each quantum represents the amount of energy
the stage requires to perform an (application-defined) unit of work.
The broker delivers tickets to each stage according to its internal
schedule and each stage’s priority, ensuring that the ticket values
match the requested quanta. This is similar to the token-bucket en-
ergy scheduler described by Banerjee et al. [3].

Given initial battery capacity E and lifetime target tl, the bro-
ker computes the nominal energy depletion rate ρ = E/tl. When
allocating energy tickets, the broker determines the current energy
availability e(t) using Pixie’s energy meter, and compares it to the
scheduled energy availability ê(t) = E − ρ · t. The energy deficit
is computed as ∆ = e(t)− ê(t).

We have implemented several policies for energy scheduling.
The conservative policy will only allocate tickets as long as ∆ > 0,
which adheres strictly to the energy schedule. In some cases, it may
be desirable to permit energy consumption above the limit, as long
as the application recoups the deficit at a later time. (As an ex-
ample, consider transmitting a series of radio messages as soon as
an interesting event is detected, which might necessitate sleeping
for a longer interval to adhere to the lifetime target.) The credit-
based policy allows the application to accumulate an energy debt,
up to a configurable amount α. As long as ∆ > −α, the bro-
ker will allocate new energy tickets. To ensure debt payback, once
the deficit reaches this threshold the broker stops allocating tickets
until ∆ > 0. This causes the application to adhere to the energy
schedule over long periods, but allows short bursts of energy usage
that would otherwise violate the schedule.

Energy-aware switch: The energy switch broker accepts data on
its input port and directs it to one of several output ports, based
on energy availability. Multiple application stages register with the
switch, providing information on their energy quanta requirements
and priority. The switch receives energy tickets from the default
energy broker at some rate based on the lifetime target. The switch
directs data to the stage with the highest priority that does not ex-
ceed energy availability. This is an example of broker layering,
allowing the energy scheduling policy to be decoupled from that of
the switch. This is similar to Eon’s energy state-based paths [48],
although Pixie’s resource brokers permit a greater degree of flexi-
bility.

Energy-aware filter: Similar to the energy-aware switch, this bro-
ker selectively drops input data to meet the lifetime target, again
using the default energy broker to receive tickets according to the
lifetime target. When dropping input data, downstream stages re-
ceive no input and go idle; in effect, the energy-aware filter controls
the scheduling of downstream stages. By placing an energy-aware
filter near the root of the dataflow graph, the entire application can
be duty-cycled according to the energy schedule.

Bandwidth broker: Pixie’s bandwidth broker uses information on
current bandwidth availability to issue bandwidth tickets to applica-
tions according to a priority-driven policy. Application stages reg-
ister their bandwidth quanta requirements (expressed as the number
of packets to be transmitted over an allocation window) and prior-
ity with the broker. Each allocation window, the broker orders the
requested bandwidth quanta by decreasing priority and allocates
tickets to application stages until the ticket values exceed the cur-
rent bandwidth estimate.

Given that bandwidth may fluctuate over short time intervals, the
allocation window must be chosen carefully to avoid the need for
ticket revocation. At the same time, using a short allocation win-
dow imposes high overhead and may not match the application’s in-
ternal bandwidth requirements (which might vary over longer time
scales). The broker matches its allocation epoch to the underlying
bandwidth allocator’s estimation window, set to 5 sec by default.

Combined bandwidth/energy broker: Pixie’s broker model al-
lows composition of resource management policies across distinct
physical resources. As an example, the bandwidth/energy broker
performs joint allocations of bandwidth and energy for downstream
stages. Each client stage of the broker registers a request for a re-
source quantum of b units of bandwidth and e units of energy, again
with a corresponding priority. Note that allocating bandwidth al-
ways implicitly allocates energy for the corresponding transmis-
sions; the additional energy allocation e might represent compu-
tational work required to generate the data to be transmitted. The
broker allocates resources using a priority-first bin-packing solu-
tion based on both current bandwidth and energy availability.

3.5 Discussion
Two issues arise when considering the potential space of re-

source brokers and corresponding policies. The first is whether
tickets and brokers place an undue burden on application code to
reason about resource management under varying conditions. While
Pixie’s ticket abstraction permits a wide range of policies to be im-
plemented, it is also true that many applications do not need to be
concerned with this level of detail. One approach for these appli-
cations is to treat allocations as a coarse-grained indication of the
“fidelity level” (e.g., low, medium, or high) at which they should
operate, similar to the interface provided by Levels [31]. Pixie is
intended to support both fine-grained and coarse-grained adaptivity
through a single programming model.

The second issue concerns the generality of the broker model,
in terms of the set of policies that can be supported by interposing
broker stages within an application graph. Brokers appear to be
very general in this regard, and can affect cross-layer adaptations
using control interfaces into stages in different portions of the stage
graph. By the same token, multiple brokers might “compete” for
the same underlying resource. Our assumption is that brokers ex-
plicitly coordinate (for example, by performing proportional-share
allocations) in this event. Our experiments to date have not en-
countered a need for multiple brokers for a given resource. While
a complete exploration of resource management policies is beyond
the scope of this paper, we feel that Pixie’s resource ticket model
makes it possible to express a range of policies within a unifying
architecture.

Finally, brokers must be aware of the resource demands of appli-
cation stages. We assume that applications correctly (and perhaps
conservatively) report their resource demand to brokers. This re-
quires either online measurement or offline profiling, and Pixie is
agnostic as to which method is used.

/* Simple stage implementation */
generic module TestStageP() {

provides interface PixieStage;
uses interface PixieSink as Output;
uses interface PixieResource as EnergyAlloc;
uses interface PixieMemAlloc;

} implementation {
ticket_t curTicket; /* Energy ticket */

command error_t PixieStage.init() { /* ... */ }

command error_t PixieStage.run(memref_t ref) {

/* Process incoming data if enough energy */
if (tktAmount(curTicket) >= ENERGY_NEEDED) {
/* Redeem energy ticket */
call EnergyAlloc.redeem(curTicket);
/* Process data */
processData(ref);

} else {
/* Request more energy */
call EnergyAlloc.request(ENERGY_REQUEST,

60*1000);
}

/* Send ref downstream */
call Output.emit(ref);
/* Ref no longer needed by this stage */
call PixieMemAlloc.release(ref);

}

event void EnergyAlloc.ticketGranted(
ticket_t ticket) { curTicket = ticket; }

}

Figure 2: Implementing a Pixie stage.

4. IMPLEMENTATION
Pixie is implemented in NesC [17], allowing us to directly link

against the wide range of hardware drivers and libraries imple-
mented for TinyOS [24]. Since Pixie provides its own abstractions
for concurrency, memory management, and dataflow, “legacy” Tiny-
OS code must be wrapped in a Pixie stage before use. Pixie does
not guarantee backwards-compatibility with all TinyOS code, since
such code might conflict with Pixie’s scheduling and resource man-
agement mechanisms.

As shown in Figure 2, a Pixie stage is implemented as a NesC
component that provides the PixieStage interface. For each
input to the stage, the PixieStage.run() command is called
with the corresponding memref as an argument. A stage may have
zero, one or more output ports, provided by the PixieSink inter-
face; a stage pushes data to an output port by calling PixieSink.
emit(). Stages may provide additional, customized control in-
terfaces to coordinate their operation with other stages or with re-
source brokers. Stages use the PixieResource interface for re-
questing and manipulating resource tickets.

Figure 3 shows the wiring for a complete Pixie application, con-
sisting of stages for sampling, filtering sample values, storing data
to flash, performing some processing on the data, and transmitting
data to the base station. Pixie provides a standard set of stages
for radio communication, timers, flash I/O, LEDs, and sampling.
The PixieEnergySwitch stage implements logic for selecting
which of the two processing stages should receive input data, based
on available energy. The broker and the processing stages use sepa-
rate control wiring to coordinate their operation. Likewise, the bro-
ker uses control wiring to PixieCore, which provides the low-
level energy allocator. As shown in the figure, Pixie application
wirings tend to be very succinct.

The core Pixie implementation (including interfaces, header files,

configuration MyApp {
} implementation {
components
PixieCore,
new PixieSamplingStage(RATE, CHANNELS),
new SampleFilterStage() as Filter;
new PixieStorageStage() as Storage;
new PixieEnergySwitch() as Broker,
new ProcessingStageA() as ProcA,
new ProcessingStageB() as ProcB,
new PixieSendStage(BASE_STATION_ID);

/* Dataflow graph wiring */
PixieSamplingStage.Output -> Filter.Input;
Filter.Output -> ProcA.Input;
Filter.Output -> ProcB.Input;
Filter.Output -> Storage.Input;
ProcA.Output -> SendStage.Input;
ProcB.Output -> SendStage.Input;

/* Control wiring between broker and stages */
Broker.EnergyControl -> ProcA;
Broker.EnergyControl -> ProcB;
/* Interface to energy allocator */
Broker.EnergyAlloc -> PixieCore;

}

Figure 3: Example Pixie application wiring.

and core system components) is 8755 lines of NesC code, including
comments. Most components are very short, less than 200 lines of
NesC code apiece. Section 6 presents benchmark results measuring
Pixie’s computational and memory overhead.

5. APPLICATION EXAMPLES
In this section, we detail two applications that we have devel-

oped using the Pixie OS: a system for limb motion analysis using a
network of wearable sensors, and an acoustic target detection sys-
tem. These applications represent a broad class of data-intensive
sensor networks. Other applications that fall into this space include
structural monitoring [7, 8, 42], seismic monitoring of earthquakes
and volcanoes [25, 53], and acoustic animal habitat monitoring [1,
35].

5.1 Limb motion analysis
The first application we consider involves the use of wearable

sensors for high-resolution monitoring of limb movements. This
application is intended to improve the evaluation and care of pa-
tients being treated for Parkinson’s Disease, stroke, epilepsy, and
other diseases that affect an individual’s motor ability. Our group
is working closely with physicians in rehabilitation medicine to de-
velop this application for various studies; an earlier version of the
system is currently being used to measure the effectiveness of deep-
brain stimulation in Parkinson’s patients. The goal of the system is
to capture detailed traces of limb movements to identify periods of
dyskinesia and bradykinesia, which are tremors and sluggish move-
ments associated with the disease, and are affected by the timing
and dosage of the medication taken by the patient.

Current approaches to this problem include direct observation
by a physician, (who scores the patient’s motor function subjec-
tively), as well as bulky dataloggers attached to wired sensors on
the patient’s limbs. These approaches are only viable in a labo-
ratory setting, limiting the duration and realism of the collected
data. Wearable, wireless sensors have the tremendous advantage
that they can be worn continuously by a patient over the course of
several weeks of a study, except while sleeping and bathing. Nodes
can be recharged each night, allowing battery size to be minimized.

In our system, a patient wears a set of up to 10 SHIMMER [26]

nodes with triaxial accelerometer and gyroscope sensors. One node
is worn on each of the limb segments (upper and lower arm and
leg), one on the waist, and another on the torso. The SHIMMER
platform is based on the TI MSP430 microcontroller and CC2420
802.15.4 radio, and includes 2 GB of MicroSD flash for data log-
ging. The node uses a slim rechargeable battery and measures just
54 × 36 × 18 mm and weighing 24 g, including the case. A lap-
top located in the patient’s home acts as a base station, collecting
data from the body sensor network and relaying it to the physician’s
office using a dialup or broadband Internet connection.

From a high level, the system collects six channels of data, sam-
pled at 100 Hz per channel, from each body sensor node. Raw sig-
nals are then passed through a series of feature extractors, which
derive features such as peak amplitude, RMS, dominant frequency,
jerk (derivative of acceleration), periodicity, and approximate en-
tropy over a series of overlapping time windows from each signal.
Features are then passed to a classifier that clusters the feature val-
ues to determine if the patient is experiencing normal movement,
dyskinetic, or bradykinetic motor fluctuations.

Given the limited radio bandwidth of low-power sensor nodes,
especially with up to 10 nodes in close proximity, it is not practical
to transmit complete raw signals from each node in real time. In
addition, the radio link capacity may fluctuate greatly, due to the
patient’s movement within the home, and may experience periods
of disconnection when the patient leaves the home or is otherwise
out of range of the base station. Finally, the nodes lack the compu-
tational power to perform complete signal classification locally.

Our design strikes a balance between computation and commu-
nication load by performing feature extractions on the sensor node,
and opportunistically using available radio bandwidth to send the
highest priority data to the base station (either raw signal data or
features computed from the raw signal), subject to bandwidth limi-
tations. We assume that each feature type Fi has an associated size
S(Fi), in terms of the number of radio packets required to trans-
mit one window of the feature, and a priority P (Fi), assigned by
the end user. For example, the priority for raw signals is higher
than that for dominant frequency features, which is in turn higher
than RMS and peak amplitude features. On each epoch, the system
determines the set of features to transmit using a priority-first allo-
cation, subject to the current estimate of the channel capacity to the
base station.

This application maps naturally onto Pixie’s dataflow model, as
shown in Figure 1. Raw samples are passed through a stillness fil-
ter, which drops the data when the sensor node does not appear
to be moving. Data is then passed to a series of feature extraction
stages, which compute features across multiple overlapping win-
dows of the input signal. Resource management is delegated to the
bandwidth broker, described in Section 3.4, which assigns a frac-
tion of the radio bandwidth to each of the feature generation stages
according to the current channel capacity.

In our current prototype, sensor nodes do not buffer features for
later transmission; our goal is to minimize the latency between sig-
nal collection and feature delivery at the base station. This implies
that during periods of disconnection, features are not computed,
thereby saving energy. A natural extension would involve buffering
data in flash and transmitting previously-computed features when
connectivity is reestablished. Also, all data must be sent directly to
the base station, rather than to a body-mounted gateway that could
collect and buffer data locally. Due to space limitations, we do not
consider these alternatives in this paper.

The entire motion analysis application consists of five application-
specific stages, with a total of 1486 lines of NesC code. The main
application wiring is just 82 lines.

Detector Energy cost Accuracy False positive rate
THRESH 2.71 mJ 70.5% 25.0%
HIGHPASS 13.95 mJ 84.0% 16.0%
FFT 49.12 mJ 100.0% 0.0%

Figure 4: Summary of detection algorithms used by the acoustic tar-
get detection system. Accuracy is defined as the ratio of the sum of true
positives and true negatives to the total number of sample windows.

5.2 Acoustic target detection
The second application involves the use of a network of micro-

phones to perform acoustic target detection, such as detecting an-
imal movements, gunfire, or vehicles passing through the sensor
field. Other systems that involve acoustic target detection include
EnviroMic [35], ENSbox [1], and PinPtr [47]. Our goal is not
to demonstrate new techniques for acoustic signal processing, but
rather to highlight the features of Pixie that enable resource adap-
tivity in this domain.

Our focus here is on the detection of acoustic signals of inter-
est, rather than on ranging and tracking of their source. Target
detection requires sampling at high data rates (several kHz) and
significant computation to filter out noise and detect the target’s
acoustic signature. In addition, the sensor network’s operation is
highly energy-constrained, given the need for a long lifetime. This
application is designed to run on the iMote2, which features a Mar-
vell PXA271 XScale processor, capable of running at frequencies
between 13 and 416 MHz, with 256 KB of on-chip memory.1

The Pixie-based acoustic detection application strives to meet a
target lifetime for each node while maximizing the accuracy of de-
tection and minimizing false positives. Each sensor node samples
acoustic data at 24 kHz and passes the raw samples grouped in 512
millisecond windows to a quietness filter, which drops windows
that do not appear to contain a significant acoustic waveform.

Windows that pass the filter are passed to an energy-aware switch,
as described in Section 3.4. The switch enables one of several de-
tector stages based on current energy conditions. Each detector d
consumes some amount of energy ed to process an input signal,
with a corresponding detection accuracy ad and false positive rate
fd. When a detector “fires,” it sends a radio message to the base
station indicating the node ID and detection time. Note that both
true and false detections cause radio messages to be sent.

By using a range of detectors, with varying energy cost and accu-
racy, the energy broker can tune the fidelity of the system subject to
fluctuations in load (arising due to the quietness filter). The detec-
tion algorithms that we have developed are summarized in Figure 4.
The simplest and cheapest detector just calculates the mean ampli-
tude of the acoustic signal over each of a sequence of subwindows.
If the mean amplitude of a subwindow exceeds a set threshold, the
detector fires. Note that this detector cannot discriminate between
noise and the target, so its false positive rate is expected to be high.
A more sophisticated detector first applies an FIR highpass filter
to remove some of the low-frequency noise, with the assumption
that the target’s acoustic signature falls in a higher frequency range.
This may not be effective in the face of broadband noise sources.
The most expensive detector performs a 512-point FFT, matching
the spectral content of the signal against a known signature of the
target (similar to the marmot call detector described by Girod et
al. [18]).

As expected, the more sophisticated detectors require a greater
amount of energy, due to their higher computational overhead. More-

1The iMote2 supports an additional 32 MB of external DRAM;
however, in this application we disable the DRAM due to its pro-
hibitively high power consumption.

over, the FIR detector and FFT detector requires that the CPU fre-
quency be set to 104 MHz to keep up with the incoming sample
rate. The FFT stage requests the frequency switch from Pixie when
it begins processing a window of samples, and returns the CPU to
the default frequency of 13 MHz when the computation is com-
plete. For comparison, the threshold detector requires 2.71 mJ of
energy for each window it processes, while the FFT detector re-
quires over 49.12 mJ. This application consists of 5 application-
specific stages, with a total of 1791 lines of NesC code. The appli-
cation wiring is 62 lines of code.

6. EVALUATION
In this section, we present a detailed evaluation of Pixie along

several axes. First, we evaluate Pixie’s overhead, in terms of CPU
time and memory footprint, through microbenchmarks. Second,
we evaluate the accuracy of Pixie’s runtime bandwidth and en-
ergy estimation techniques. Third, we explore the effectiveness
of bandwidth adaptivity in the motion analysis system, and the
use of energy adaptivity in the acoustic tracking application, while
varying the target lifetime and energy scheduling policy. Finally,
we demonstrate the ease of altering resource management policies
through a broker that performs combined bandwidth and energy
adaptivity.

6.1 Microbenchmarks
To measure the CPU overhead of Pixie’s dataflow abstractions,

we wrote a simple microbenchmark that pushes a memref through
a linear chain of 10 stages that perform no computation. We mea-
sure the time to traverse the chain, comparing it to the time taken by
a similar TinyOS application using a series of cross-module com-
mand invocations. Running on a iMote2 sensor node, Pixie requires
0.009 ms per stage traversal, compared to 0.003 ms per component
traversal in TinyOS. The additional overhead is largely due to mem-
ref marshaling, requiring that the reference count be incremented
and decremented at each stage boundary.

To estimate memory footprint, we wrote a benchmark consisting
of a timer that causes the LEDs to blink and sends a radio mes-
sage, analogous to the TinyOS RadioCountToLeds application. The
Pixie application consumes 11752 bytes of program memory and
6256 bytes of RAM. Of this, 214 bytes of ROM and 125 bytes of
RAM are consumed by the application stages. The Pixie sched-
uler and memory manager use 958 (5825) bytes of ROM (RAM);
the bulk of this is the heap, statically allocated at compile time.
In comparison, RadioCountToLeds uses 10570 bytes of ROM and
271 bytes of RAM. The additional memory overhead for Pixie is
largely due to the heap.

6.2 Resource estimation accuracy
An important concern for enabling resource adaptivity is how

well Pixie’s low-level resource estimators can track varying condi-
tions. To evaluate the bandwidth estimator, we introduced artificial
packet delays into Pixie’s link layer, allowing us to control the per-
packet delay across a range of values. Pixie’s bandwidth estimator
(which is unaware of the artificial delays) must therefore track the
change in the delay. A simple application sends packets at a rate
just below that reported by the estimator. The results are shown in
Figure 5. The top portion of the figure shows the artificial packet
rate and the estimated rate, which match closely. The lower portion
of the figure shows the estimation error, which is nearly zero except
for transitions between rates; this is not surprising since the estima-
tor computes the measured delay over a measurement window of
1 second. In all cases the bandwidth estimator rapidly converges to
the new rate.

-80
-60
-40
-20

 0
 20
 40
 60
 80

 250 300 350 400 450 500 550 600

R
at

e
er

ro
r

(%
)

 0

 5

 10

 15

 20

 25

 30

 35

 40

R
at

e
(p

ps
)

Time (sec)

actual rate
estimated rate

Figure 5: Bandwidth estimation accuracy. In this experiment, the link
layer is modified to artificially delay packets across a range of delay set-
tings. Pixie’s bandwidth estimator rapidly determines the new rate, with
errors occurring on each rate transition.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10

C
ur

re
nt

(m
A

)

Time(sec)

104 MHz, Radio on

104 MHz, Radio off

13 MHz, Radio on

13 MHz, Radio off

Measurement
Energy Monitor

Figure 6: Accuracy of Pixie’s energy metering component.

To evaluate Pixie’s energy meter, we wrote an application for
the iMote2 that performs a series of operations with varying energy
drain, including radio listening, radio transmission, radio idle, and
computing a 512-point FFT at 13 MHz and 104 MHz. The order
and duration of each operation are randomized. We instrumented
the node using a Keithley 2701 digital multimeter and compared
its output to that of Pixie’s energy metering component. A repre-
sentative run is shown in Figure 6; the estimated energy is nearly
identical to the actual energy usage. We ran the experiment for a to-
tal of 3 hours and measured the total energy consumption; Pixie’s
energy meter underestimated the true energy usage by 2.5%, and
the error was nearly constant during the experiment. We believe
our estimate can be improved with more detailed modeling.

6.3 Bandwidth adaptivity
Next, we look at the effectiveness of bandwidth adaptivity in

the motion analysis system described in Section 5.1. For this ex-
periment, we use a simplified version of the application that com-
putes three types of features from the raw sensor data: RMS, peak
amplitude (PA), and autocorrelation (AC). Each feature type, in-
cluding raw samples, has an associated bandwidth requirement and
application-specific value, shown in Figure 7. Time is divided into
1 second epochs. For each epoch, the bandwidth broker allocates

Feature type Bandwidth Value
Raw samples 20 pps 100
RMS 6 pps 20
Peak amplitude 4 pps 10
Autocorrelation 2 pps 5

Figure 7: Feature types, bandwidth requirements, and application-
assigned values used in the motion-analysis system.

0

20

40

60

80

100

 0 50 100 150 200 250 300 350
0
5
10

0
5
10
15
20

 G
en

er
at

ed
 d

at
a

va
lu

e

Q
ue

ue
 le

n

 R
at

e
(p

ps
)

Time (sec)

link capacity
app. rate

data value generated by application

packet queue len

Figure 8: Bandwidth adaptivity in the motion-analysis application.
This graph shows the total value of data generated by the application (top)
and the estimated link capacity, application packet rate, and packet queue
length (bottom). Data is shown for one node in a four-node network. The
radio link capacity is artificially varied using a random pattern.

bandwidth tickets either for transmitting raw samples, or to the
feature-extraction stages, according to the current link capacity es-
timate. Recall that multiple nodes are worn by the patient and are
each competing for the radio channel in an uncoordinated fashion.

Varying link capacity: For the experiment, we use a network
of 4 nodes (placed near each other) transmitting to a nearby base
station, artificially varying the packet delay experienced by the link
layer on each node; this ensures repeatability and avoids artifacts
due to mobility and path loss. Figure 8 shows a trace from a single
node as bandwidth is varied. The upper portion of the figure shows
the total value in terms of features and/or raw samples generated by
the application, for each 1 second epoch. The lower portion of the
figure shows the corresponding bandwidth estimate (which is var-
ied randomly), the achieved application data rate, and the transmis-
sion packet queue length. The bandwidth broker caps the generated
packet rate just below the estimated link capacity, to avoid over-
flowing packet buffers. Although it is difficult to tell from the fig-
ure, there is a delay of 1 second between changes in the bandwidth
and the corresponding response by the application. This causes the
packet queue to grow when the link capacity drops, as expected.

Impact of RF interference: To evaluate adaptivity under more
realistic link capacity variation, we set up a network of four nodes,
with a separate node generating varying amounts of cross-traffic to
induce radio interference. Figure 9 shows a trace of the behavior
for a single node in the network as the cross-traffic rate increases.
Pixie’s bandwidth broker tunes the type of data generated by the ap-
plication in response to the varying link capacity; the packet queue
only begins to fill when the cross-traffic nears the channel capacity
of approximately 100 packets/sec.

6.4 Energy adaptivity
Next, we look at the use of energy adaptivity in the context of the

acoustic target detection application, running on an iMote2 node

0

20

40

60

80

100

 20 40 60 80 100 120 140 160 180 200
0
20

0
20
40
60
80
100

 G

en
er

at
ed

 d
at

a
va

lu
e

Q
ue

ue
 le

n

 In
te

rf
er

en
ce

 (
pp

s)

Time (sec)

packet queue len

generated data value
interference

Figure 9: Adaptivity under radio interference. This figure shows the
behavior of one node (in a 4-node network) experiencing varying amounts
of radio interference. The generated data value (top) and estimated link
capacity (bottom) are shown. Pixie’s bandwidth estimator tracks the esti-
mated link capacity, while the bandwidth broker adapts the type of data sent
in each epoch accordingly.

described in Section 5.2. For these experiments, we generate a syn-
thetic acoustic signal consisting of intermittent marmot calls, in-
terspersed with varying background noise consisting of bird chirps
and wind. These signals are based on an acoustic dataset of marmot
chirps collected by the VoxNet system [2].

We observe the behavior of the node as it detects the marmot
calls and adapts to energy availability by selecting different de-
tection algorithms. While the FFT detector has high accuracy, it
consumes considerably more energy than the simpler detection al-
gorithms. Background noise tends to cause the less accurate detec-
tors to report false positives, which wastes energy by transmitting
spurious detection messages. We vary two parameters: the energy
scheduling policy used by Pixie’s energy broker and the node’s life-
time target. We assume that nodes are equipped with high-capacity
35 Ah Tadiran D-cell batteries.

Different energy scheduling policies: Figure 10 shows the re-
sults with a target lifetime of 40 days, with three different energy
scheduling policies provided by Pixie’s energy broker. The opti-
mistic strategy ignores energy limits and always runs the FFT de-
tection algorithm, which has perfect marmot detection accuracy
and no false positives. This strategy would achieve a lifetime of
29 days, well below the target. The conservative and credit-based
strategies are described in Section 3.4. As the figure shows, the
conservative strategy always adheres to the energy schedule, while
the credit-based scheme occasionally uses more energy than the
schedule would normally allow. However, it is forced to use the
less-expensive HIGHPASS and THRESH detection algorithms, in-
curring a higher rate of false positives.

The credit-based scheme opts to incur “energy debt” when there
has been a marmot detection in the previous time window (e.g.,
from 0-100 seconds in the figure). When no detections have oc-
curred for at least 10 seconds, the policy enters “debt payback” by
disabling detections altogether (e.g., from 100-150 seconds). This
allows the node to recoup energy but may lead to missed marmot
detections.

Figure 11 summarizes the accuracy and false positive rate for
each policy over a one-hour run. The credit-based scheme is able
to achieve higher accuracy and lower false positives than the con-
servative policy.

Different lifetime targets: Next, we explore the effect of vary-

-0.4

-0.2

 0

 0.2

 0.4

 0 30 60 90 120 150 180 210 240 270 300 330 360

CR

CO

OP

GR

R
el

at
iv

e
B

at
te

ry
 C

ha
rg

e
C

on
su

m
pt

io
n

(m
A

h)

Time (sec)

Target Energy
Optimistic

Conservative
Credit-based

Figure 10: Energy adaptivity with different energy scheduling policies.
This figure shows energy consumption and marmot detections under three
energy scheduling policies: optimistic (OP), conservative (CO), and credit-
based (CR). The top portion of the figure shows the energy consumed by the
node relative to a target node lifetime of 40 days. The bottom portion shows
the number of marmot detections under each policy, compared to ground
truth (GR) of true marmot calls in the acoustic trace.

Policy Detection accuracy False positives
Optimistic 100% 0%
Credit-based 95.61% 3.99%
Conservative 92.19% 7.66%

Figure 11: Detection accuracy and false positive rate for each energy
scheduling policy.

ing the lifetime target, using only the conservative energy-scheduling
policy. Figure 12 shows results for lifetime targets of 30, 40, and
50 days. As expected, with a longer lifetime target, the application
is forced to run lower-quality detection algorithms, which impacts
both detection accuracy and the false positive rate. For a target of
30 days, the system achieves 99.9% accuracy and 0.1% false posi-
tives; for 50 days, the accuracy drops to 78.3% and false positives
increase to 20.4%.

Impact of unexpected energy drain: The previous experiments
assumed that the sensor node was capable of predicting its energy
requirements accurately, based on knowledge of the energy cost for
running the detection algorithms and transmitting detection mes-
sages. Next, we look at the impact of unexpected energy drain,
in this case caused by the node forwarding radio packets along a
multihop routing path. We emulate this condition using separate
node that relays packets through the node under test, using a bursty
traffic pattern generating up to 10 packets/sec.

Figure 13 shows the results for a lifetime of 40 days with con-
servative energy broker. As expected, packet forwarding causes
the node to have less available energy for target detections, and its
detection performance suffers accordingly. In this case, accuracy
drops to 86.2% with a false positive rate of 13.6%. Note, however,
that the node continues to meet its energy schedule, since Pixie’s
software energy meter accounts for the additional drain induced by
packet forwarding and the acoustic detection logic adapts accord-
ingly.

6.5 Combined energy and bandwidth
adaptivity

As a final demonstration of Pixie’s ability to facilitate adaptive
applications, we consider augmenting the motion-analysis system
with both energy and bandwidth awareness. Given the small (250

 34.994

 34.995

 34.996

 34.997

 34.998

 34.999

 0 30 60 90 120 150 180 210 240 270 300 330 360

50

40

30

GR

R
em

ai
ni

ng
 B

at
te

ry
 C

ha
rg

e
(A

h)

Time (sec)

30 Days
40 Days
50 Days

Figure 12: Lifetime target. Conservative broker behavior under different
lifetime targets.

-0.4

-0.2

 0

 0.2

 0.4

 0 30 60 90 120 150 180 210 240 270 300 330 360

LOAD

F

NF

GR

R
el

at
iv

e
B

at
te

ry
 C

ha
rg

e
C

on
su

m
pt

io
n

(m
A

h)

Time (sec)

Target Energy
Background Forwarding

No Background Forwarding
Forwarding Load

Figure 13: Effect of multihop packet forwarding. This figure shows
the behavior of the conservative energy broker under a bursty background
packet forwarding load. The upper portion of the figure shows the energy
availability using a target lifetime of 40 days. The lower portion of the
figure shows the background traffic pattern (LOAD), ground-truth marmot
calls (GR), and the marmot detections both with (F) and without (NF) the
background forwarding load.

mAh) battery size used by the wearable sensors, to achieve long
target lifetimes, it may be necessary for nodes to limit their radio
transmissions over time. Introducing this behavior into the appli-
cation was easy: we created a new broker that bounds the maxi-
mum transmission rate by the link capacity or the energy availabil-
ity, whichever is smaller. Figure 14 shows the behavior of a node
adapting to bandwidth availability (artificially limited in a manner
identical to Figure 8 with target lifetimes of 24, 36, and 48 hours.
The longer the target lifetime, the lower the rate at which nodes
transmit data, which leads to graceful degradation in the value of
the data (raw samples or features) generated by the node.

7. RELATED WORK
Pixie is closely related to a range of primitives for resource man-

agement in sensor networks; programming models facilitating adap-
tive application design; and resource adaptivity for mobile and per-
vasive computing systems. We describe each in turn below.

Resource management primitives: Operating systems such as
TinyOS [24], SOS [22], and Contiki [11] provide low-level inter-

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350
 0
 10
 20
 30
 40

 G
en

er
at

ed
 d

at
a

va
lu

e

Li
nk

 c
ap

ac
ity

Time (sec)

24 hr lifetime target
36 hr lifetime target
48 hr lifetime target

Figure 14: Combined energy and bandwidth adaptivity in the mo-
tion analysis application. A combined energy/bandwidth broker is used to
bound radio transmissions to meet a lifetime target of 24, 36, and 48 hours.
As the figure shows, longer lifetimes cause nodes to gracefully degrade in
terms of the type of data they produce.

faces for managing hardware state but offer no guidance for us-
ing these interfaces to achieve a given resource-management goal.
Low-power listening MACs, such as B-MAC [44], reduce energy
usage for idle listening, while ICEM [29] and SNACK [20] au-
tomate some aspects of energy savings by coordinating access to
hardware resources across multiple components and concurrent tasks.
Adaptive duty-cycling algorithms, such as those proposed by Vig-
orito et al. [51] and Kansal et al. [28], tune the duty cycle of a
sensor network application according to energy availability.

Pixie relies on estimation of available energy and radio band-
width for driving resource allocations. Most approaches to energy
metering have relied on hardware support, including iCount [13],
Eon [48], Triage [4], and PowerScope [15]. Pixie opts for a model
that tracks hardware states in software, similar to the approaches
used in Contiki [12], ECOsystem [56], and the PowerTOSSIM sim-
ulator [46]. BodyQoS [57] proposes a communication layer for
body sensor networks that provides quality-of-service guarantees
using link estimation and admission control; this approach could be
implemented as a broker atop Pixie’s bandwidth allocation layer.

Programming models: Pixie is related to several systems that
facilitate resource-aware application design. TinyDB’s lifetime-
based queries [36] target a given lifetime by (statically) setting the
query duty cycle. Triage [4] allows application logic to be parti-
tioned across coupled hardware platforms based on energy avail-
ability.

Eon [48] and Levels [31] provide programming models for adapt-
ing to energy availability. Eon provides a dataflow model similar to
Pixie and automatically tunes timer rates and dataflow paths based
on energy availability; application code is not involved in resource
management decisions at runtime. In contrast, Levels allows ap-
plication components to define multiple fidelity levels, which are
configured in response to energy availability. Pixie and Levels are
implemented in NesC, whereas Eon requires using a new configu-
ration language. Both Levels and Eon are limited to energy man-
agement, and it is unclear whether these systems could be gener-
alized to managing other resources. Both systems strongly couple
the resource management policies to the underlying mechanisms.
We note that the policies used by Eon and Levels could easily be
implemented as Pixie resource brokers.

Nano-RK [14] provides real-time guarantees through static re-
source reservations based on offline estimates of CPU time, packet

rates, and sampling intervals used by an application. However, this
approach fails to address dynamically-varying load or fluctuations
in resource availability that arise at runtime.

Pixie’s resource tickets and broker models are strongly influ-
enced by resource containers [5], as well as related concepts in
Odyssey [41], ECOsystem [56], and Rialto [27]. Pixie’s dataflow
programming model is inspired by similar approaches in Vango [21],
Click [30], WaveScope [40], and Flask [37], although none of these
systems directly address resource awareness and adaptivity.

Mobile systems: Outside of the sensor network domain, much
work has focused on resource awareness in mobile and pervasive
computing systems. Odyssey [41] is a framework for adaptive mo-
bile applications that permits applications to adapt to changing net-
work bandwidth [41], energy [15, 33], and computational load [39].
ECOsystem [56] does not require application code changes, in-
stead tuning OS scheduling parameters automatically based on en-
ergy availability. Puppeteer [32] takes a similar approach, adapting
to bandwidth variation by interposing on the software component
layer in Windows NT DCOM. These systems differ substantially
from Pixie in terms of application demands, hardware platforms,
and the need to support legacy operating systems. Indeed, we argue
that sensor networks are inherently better suited to resource adap-
tivity, given that many applications can naturally tolerate variations
in sampling, communication, or processing rates.

8. CONCLUSIONS AND FUTURE WORK
Pixie represents a new approach to resource management in sen-

sor networks, providing applications with fine-grained visibility
and control over resource allocation through tickets, while permit-
ting high-level, reusable resource management policies via brokers.
We have demonstrated Pixie’s effectiveness at managing bandwidth
and energy constraints in two data-intensive applications. Pixie in-
corporates runtime estimation of memory, storage, bandwidth, and
energy availability, and a toolkit of brokers for mediating between
application needs and low-level resource allocations.

To date, Pixie focuses on resource management of an individual
sensor node. Our next steps involve coordinated resource manage-
ment of sensor nodes across the network. A range of algorithms
and protocols have been proposed for congestion control, network
topology adaptation, coordinated duty-cycling, and other behav-
iors. Our goal is to allow such policies to be expressed through a
unified programming model that can permit domain scientists and
other non-expert users to build adaptive, efficient, and self-tuning
sensor networks by reasoning about resource management as a core
aspect of the programming abstraction.

Acknowledgments
The authors wish to thank Paolo Bonato and Shyamal Patel of
the Spaulding Rehabilitation Hospital for their assistance with the
motion-analysis application. We also thank Lewis Girod for pro-
viding acoustic dataset and offering advice on marmot detection
DSP algorithms. Finally, we would like to thank our shepherd,
Mark Corner, for his guidance in preparing the final version of the
paper. This work was supported by the National Science Founda-
tion (grant numbers CNS-0546338 and CNS-0519675), Microsoft,
Sun Microsystems, Siemens, CIMIT, and ArsLogica SpA. We are
extremely grateful to all of our sponsors for their support of this
research.

9. REFERENCES
[1] A. M. Ali, K. Yao, T. C. Collier, C. E. Taylor, D. T.

Blumstein, and L. Girod. An empirical study of collaborative

acoustic source localization. In IPSN ’07: Proceedings of the
6th international conference on Information processing in
sensor networks, Cambridge, MA, 2007.

[2] M. Allen, L. Girod, R. Newton, S. Madden, D. T. Blumstein,
and D. Estrin. Voxnet: An interactive, rapid-deployable
acoustic monitoring platform. In IPSN ’08: Proceedings of
the 7th international conference on Information processing
in sensor networks, St. Louis, Missouri, 2008.

[3] N. Banerjee, M. D. Corner, and B. N. Levine. An
energy-efficient architecture for dtn throwboxes. In Proc.
IEEE INFOCOM, May 2007.

[4] N. Banerjee, J. Sorber, M. Corner, S. Rollins, and
D. Ganesan. Triage: Balancing Energy Consumption and
Quality of Service in Tiered Microservers. June 2007.

[5] G. Banga, P. Druschel, and J. Mogul. Resource containers: A
new facility for resource management in server systems. In
Proc. the Third OSDI (OSDI ’99), February 1999.

[6] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgerson, and R. Han.
MANTIS OS: An Embedded Multithreaded Operating
System for Wireless Micro Sensor Platforms. ACM/Kluwer
Mobile Networks and Applications (MONET),
10(4):563–579, August 2005.

[7] K. Chebrolu, B. Raman, N. Mishra, P. K. Valiveti, and
R. Kumar. BriMon: A Sensor Network System for Railway
Bridge Monitoring. In Proc. Sixth International Conference
on Mobile Systems, Applications, and Services (MobiSys),
Breckenridge, CO, June 2008.

[8] K. Chintalapudi, J. Paek, O. Gnawali, T. Fu, K. Dantu,
J. Caffrey, R. Govindan, and E. Johnson. Structural Damage
Detection and Localization Using NetSHM. In Proc. Fifth
International Conference on Information Processing in
Sensor Networks: Special track on Sensor Platform Tools
and Design Methods for Networked Embedded Systems
(IPSN/SPOTS’06), April 2006.

[9] T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel,
B. Harrison, B. Hemingway, J. Hightower, P. Klasnja,
K. Koscher, A. LaMarca, J. A. Landay, L. LeGrand,
J. Lester, A. Rahimi, A. Rea, and D. Wyatt. The mobile
sensing platform: An embedded system for capturing and
recognizing activities. IEEE Pervasive Magazine, April
2008.

[10] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing.
In Proceedings of the 9th ACM International Conference on
Mobile Computing and Networking (MobiCom ’03), San
Diego, California, September 2003.

[11] A. Dunkels, B. Gronvall, and T. Voigt. Contiki: A
Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Proc. First IEEE Workshop on
Embedded Networked Sensors (EmNetS), Tampa, FL,
November 2004.

[12] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He.
Software-based on-line energy estimation for sensor nodes.
In Proc. Fourth Workshop on Embedded Networked Sensors
(EmNets 2007), June 2007.

[13] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. Energy
metering for free: Augmenting switching regulators for
real-time monitoring. In Proc. Seventh International
Conference on Information Processing in Sensor Networks
(IPSN’08), April 2008.

[14] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-rk: An

energy-aware resource-centric operating system for sensor
networks. In Proc. IEEE Real-Time Systems Symposium,
December 2005.

[15] J. Flinn and M. Satyanarayanan. Managing battery lifetime
with energy-aware adaptation. ACM Transactions on
Computer Systems (TOCS), 22(2), May 2004.

[16] R. Ganti, P. Jayachandran, T. Abdelzaher, and J. Stankovic.
SATIRE: A Software Architecture for Smart AtTIRE. In
Proc. ACM Mobisys, Uppsala, Sweden, June 2006.

[17] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to
networked embedded systems. In Proc. Programming
Language Design and Implementation (PLDI), June 2003.

[18] L. Girod, M. Lukac, V. Trifa, and D. Estrin. The design and
implementation of a self-calibrating distributed acoustic
sensing platform. In SenSys ’06: Proceedings of the 4th
international conference on Embedded networked sensor
systems, pages 71–84, Boulder, CO, 2006.

[19] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek,
M. Vieira, D. Estrin, R. Govindan, and E. Kohler. The
TENET Architecture for Tiered Sensor Networks. In Proc.
ACM Conference on Embedded Networked Sensor Systems
(Sensys), Boulder, CO, November 2006.

[20] B. Greenstein, E. Kohler, and D. Estrin. A sensor network
application construction kit (snack). In Proc. ACM SenSys,
November 2004.

[21] B. Greenstein, C. Mar, A. Pesterev, S. Farshchi, E. Kohler,
J. Judy, and D. Estrin. Capturing high-frequency phenomena
using a bandwidth-limited sensor network. In Proc. Sensys
2006, Boulder, CO, November 2006.

[22] C.-C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and
M. Srivastava. SOS: A dynamic operating system for sensor
networks. In Proc. Third International Conference on Mobile
Systems, Applications, And Services (Mobisys), 2005.

[23] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher,
L. Luo, R. Stoleru, T. Yan, L. Gu, G. Zhou, J. Hui, and
B. Krogh. Vigilnet: An integrated sensor network system for
energy-efficient surveillance. ACM Transactions on Sensor
Networks, 2004.

[24] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System architecture directions for networked
sensors. In Proc. the 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 93–104, Boston, MA, USA, Nov.
2000.

[25] A. Husker, I. Stubailo, M. Lukac, V. Naik, R. Guy, P. Davis,
and D. Estrin. Wilson: The wirelessly linked seismological
network and its application in the middle american
subduction experiment (mase). Seismological Research
Letters, May/June 2008.

[26] Intel Corporation. The SHIMMER Sensor Node Platform.
2006.

[27] M. Jones, P. Leach, R. Draves, and J. Barrera. Modular
real-time resource management in the rialto operating
system. In Proc. Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V), 1995.

[28] A. Kansal, J. Hsu, M. B. Srivastava, and V. Raghunathan.
Harvesting aware power management for sensor networks. In
Proc. 43rd Design Automation Conference (DAC), San
Fransisco, CA, July 2006.

[29] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay,
and P. Levis. Integrating concurrency control and energy

management in device drivers. In Proc. 21st ACM
Symposium on Operating Systems Principles (SOSP 2007),
October 2007.

[30] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Transactions on
Computer Systems, 18(3):263–297, August 2000.

[31] A. Lachenmann, P. J. Marron, D. Minder, and K. Rothermer.
Meeting lifetime goals with energy levels. In Proc. ACM
SenSys, November 2007.

[32] E. D. Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer:
Component-based adaptation for mobile computing. In
USITS’01: Proceedings of the 3rd conference on USENIX
Symposium on Internet Technologies and Systems, pages
14–14, San Francisco, CA, 2001.

[33] X. Liu, P. Shenoy, and M. D. Corner. Chameleon:
Application level power management. IEEE Transactions on
Mobile Computing, 2008.

[34] K. Lorincz, B. rong Chen, J. Waterman, G. Werner-Allen,
and M. Welsh. Pixie: An operating system for
resource-aware programming of embedded sensors. In Proc.
Fifth Workshop on Embedded Networked Sensors
(HotEmNets’08), June 2008.

[35] L. Luo, Q. Cao, C. Huang, T. Abdelzaher, J. A. Stankovic,
and M. Ward. Enviromic: Towards cooperative storage and
retrieval in audio sensor networks. In Proc. 27th
International Conference on Distributed Computing Systems
(ICDCS ’07), June 2007.

[36] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TinyDB: An Acqusitional Query Processing System for
Sensor Networks. ACM TODS, 2005.

[37] G. Mainland, G. Morrisett, and M. Welsh. Flask: Staged
functional programming for sensor networks. In Proc. 13th
ACM SIGPLAN International Conference on Functional
Programming (ICFP ’08), Victoria, British Columbia,
Canada, September 2008.

[38] M. Mesarina and Y. Turner. Reduced energy decoding of
mpeg streams. In In MMCN, pages 73–84, 2002.

[39] D. Narayanan and M. Satyanarayanan. Predictive resource
management for wearable computing. In Proc. ACM
MobiSys 2003, San Francisco, CA, May 2003.

[40] R. Newton, L. Girod, M. Craig, S. Madden, and G. Morrisett.
Design and evaluation of a compiler for embedded stream
programs. In Proc. Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), 2008.

[41] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware
adaptation for mobility. In SOSP ’97: Proceedings of the
sixteenth ACM symposium on Operating systems principles,
pages 276–287, Saint Malo, France, 1997.

[42] S. N. Pakzad, S. Kim, G. L. Fenves, S. D. Glaser, D. E.
Culler, and J. W. Demmel. Multi-purpose wireless
accelerometers for civil infrastructure monitoring. In Proc.
5th International Workshop on Structural Health Monitoring
(IWSHM 2005), Stanford, CA, September 2005.

[43] S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. H. Growdon,
M. Welsh, and P. Bonato. Analysis of feature space for
monitoring persons with Parkinson’s Disease with
application to a wireless wearable sensor system. In Proc.
29th IEEE EMBS Annual International Conference, August
2007.

[44] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proc. Second ACM

Conference on Embedded Networked Sensor Systems
(SenSys), November 2004.

[45] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker,
and I. Stoica. A unifying link abstraction for wireless sensor
networks. In Proc. Third ACM Conference on Embedded
Networked Sensor Systems (SenSys), November 2005.

[46] V. Shnayder, M. Hempstead, B. rong Chen, G. Werner-Allen,
and M. Welsh. Simulating the power consumption of
large-scale sensor network applications. In Proc. the Second
ACM Conference on Embedded Networked Sensor Systems
(SenSys 2004), November 2004.

[47] G. Simon et al. Sensor network-based countersniper system.
In Proc. ACM SenSys ’04, November 2004.

[48] J. Sorber, A. Kostadinov, M. Brennan, M. Garber, M. Corner,
and E. D. Berger. Eon: A Language and Runtime System for
Perpetual Systems. In Proc. ACM SenSys, November 2007.

[49] K. Srinivasan and P. Levis. RSSI Is Under-Appreciated. In
Proc. EmNets, 2006.

[50] T. Stathopoulos, D. McIntire, and W. J. Kaiser. The Energy
Endoscope: Real-time Detailed Energy Accounting for
Wireless Sensor Nodes. In Proc. Information Processing in
Sensor Networks (IPSN), April 2008.

[51] C. Vigorito, D. Ganesan, , and A. Barto. Adaptive control of
duty-cycling in energy-harvesting wireless sensor networks.
In Proc. IEEE SECON 2007, San Diego, CA, 2007.

[52] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In Proc.
Operating Systems Design and Implementation (OSDI
1994), November 1994.

[53] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In Proc. 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2006), Seattle,
WA, November 2006.

[54] A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks.
In Proc. the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003), November 2003.

[55] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time
cpu scheduling for mobile multimedia systems. In Proc. the
20th SOSP (SOSP ’03), 2003.

[56] H. Zeng, X. Fan, C. S. Ellis, A. Lebeck, and A. Vahdat.
ECOSystem: Managing Energy as a First Class Operating
System Resource. In Proc. Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
San Jose, CA, October 2002.

[57] G. Zhou, J. Lu, C.-Y. Wan, M. D. Yarvis, and J. A.
Stankovic. BodyQoS: Adaptive and Radio-Agnostic QoS for
Body Sensor Networks. In Proc. IEEE INFOCOM 2008,
Phoenix, AZ, April 2008.

