
Appears inProceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS VIII), May, 2001. 1

Virtualization Considered Harmful:
OS Design Directions for Well-Conditioned Services

Matt Welsh and David Culler

Computer Science Division
University of California, Berkeley

{mdw,culler }@cs.berkeley.edu

Abstract
We argue that existing OS designs are ill-suited for the

needs of Internet service applications. These applications
demand massive concurrency (supporting a large number
of requests per second) and must be well-conditioned to
load (avoiding degradation of performance and predictabil-
ity when demand exceeds capacity). The transparency and
virtualization provided by existing operating systems leads
to limited concurrency and lack of control over resource us-
age. We claim that Internet services would be far better
supported by operating systems by reconsidering the role of
resource virtualization. We propose a new design for server
applications, thestaged event-driven architecture(SEDA).
In SEDA, applications are constructed as a set of event-
driven stagesseparated byqueues. We present the SEDA
architecture and its consequences for operating system de-
sign.

1. Introduction

The design of existing operating systems is primarily de-
rived from a heritage of multiprogramming: allowing mul-
tiple applications, each with distinct resource demands, to
safely and efficiently share a single set of resources. As
such, existing OSs strive to virtualize hardware resources,
and do so in a way which is transparent to applications. Ap-
plications are rarely, if ever, given the opportunity to par-
ticipate in system-wide resource management decisions, or
given indication of resource availability in order to adapt
their behavior to changing conditions. Virtualization funda-
mentally hides the fact that resources are limited and shared.

Internet services are a relatively new application domain
which presents unique challenges for OS design. In contrast
to the batch-processing and interactive workloads for which
existing operating systems have been designed, Internet ser-
vices support a large number of concurrent operations and
exhibit enormous variations in load. The number of concur-
rent sessions and hits per day to Internet sites translates into
an even higher number of I/O and network requests, placing
great demands on underlying resources. Microsoft’s web
sites receive over 300 million hits with 4.1 million users a

day; Yahoo has over 900 million page views daily. The peak
load experienced by a service may be many times that of the
average, and services must deal gracefully with unexpected
increases in demand.

A number of systems have attempted to remedy the prob-
lems with OS virtualization by exposing more control to
applications. Scheduler activations [1], application-specific
handlers [29], and operating systems such as SPIN [3], Ex-
okernel [12], and Nemesis [17] are attempts to augment lim-
ited operating system interfaces by giving applications the
ability to specialize the policy decisions made by the ker-
nel. However, the design of these systems is still based on
the multiprogramming mindset, as the focus continues to be
on safe and efficient resource virtualization.

We argue that the design of most existing operating sys-
tems fails to address the needs of Internet services. Our
key premise is that supporting concurrency for a few tens of
users is fundamentally different than for many thousands of
service requests. This paper proposes a new architecture for
services, which we call thestaged event-driven architecture
(SEDA). SEDA departs from the traditional multiprogram-
ming approach provided by existing OSs, decomposing ap-
plications into a set ofstagesconnected by explicitevent
queues. This design avoids the high overhead associated
with thread-based concurrency, and allows applications to
be well-conditioned to load by making informed decisions
based on the inspection of pending requests. To mitigate
the effects of resource virtualization, SEDA employs a set
of dynamic controllerswhich manage the resource alloca-
tion and scheduling of applications.

In this paper, we discuss the shortcomings of existing OS
designs for Internet services, and present the SEDA archi-
tecture, arguing that it is the right way to construct these
applications. In addition, we present a set of OS design
directions for Internet services. We argue that server op-
erating systems should eliminate the abstraction of trans-
parent resource virtualization, a shift which enables support
for high concurrency, fine-grained scheduling, scalable I/O,
and application-controlled resource management.
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2. Why Internet Services and Existing OS
Designs Don’t Match

This section highlights four main reasons that existing
OS designs fail to mesh well with the needs of Internet
services: inefficient concurrency mechanisms, lack of scal-
able I/O interfaces, transparent resource management, and
coarse-grained control over scheduling.

2.1. Existing OS Design Issues

Concurrency limitations: Internet services must effi-
ciently multiplex many computational and I/O flows over
a limited set of resources. Given the extreme degree of
concurrency required, services are often willing to sac-
rifice transparent virtualization in order to obtain higher
performance. However, contemporary operating systems
typically support concurrency using the process or thread
model: each process/thread embodies a virtual machine
with its own CPU, memory, disk, and network, and the
O/S multiplexes these virtual machines over hardware. Pro-
viding this abstraction entails a high overhead in terms of
context switch time and memory footprint, thereby limit-
ing concurrency. A number of studies have shown the scal-
ability limitations of thread-based concurrency models [6,
11, 21, 32], even in the context of so-called “lightweight”
threads.

I/O Scalability limitations: The I/O interfaces exported
by existing OSs are generally designed to provide max-
imum transparency to applications, often at the cost of
scalability and predictability. Most I/O interfaces employ
blocking semantics, in which the calling thread is sus-
pended during a pending I/O operation. Obtaining high
concurrency requires a large number of threads, result-
ing in high overhead. Traditional I/O interfaces also tend
to degrade in performance as the number of simultaneous
I/O flows increases [2, 23]. In addition, data copies on
the I/O path (themselves an artifact of virtualization) have
long been known to be a performance limitation in network
stacks [24, 27, 28].

Transparent resource management: Internet services
must be in control of resource usage in order to make in-
formed decisions affecting performance. Virtualization im-
plies that the OS will attempt to satisfy any application re-
quest regardless of cost (e.g., a request to allocate a page of
virtual memory which requires other pages to be swapped
out to disk). However, services do not have the luxury of
paying an arbitrary penalty for processing such requests un-
der heavy resource contention. Most operating systems hide
the performance aspects of their interfaces; for instance,
the existence of (or control over) the underlying file system
buffer cache is typically not exposed to applications. Stone-
braker [26] cites this aspect of OS design as a problem for
database implementations as well.

Coarse-grained scheduling: The thread-based concur-
rency model yields a coarse degree of control over resource

management and scheduling decisions. While it is possible
to control the prioritization or runnable status of an indi-
vidual thread, this is often too blunt of a tool to implement
effective load conditioning policies. Instead, it is desirable
to control the flow of requests through a particular resource.

As an example consider the page cache for a Web server.
To maximize throughput and minimize latency, the server
might prioritize requests for cache hits over cache misses;
this is a decision which is being made at the level of the
cache by inspecting the stream of pending requests. Such
a policy would be difficult (although not impossible) to im-
plement by changing the scheduling parameters for a pool
of threads each representing a different request in the server
pipeline. The problem is that this model only provides con-
trol over scheduling of individual threads, rather than over
the ordering of requests for a particular resource.

2.2. Traditional Event-Driven Programming

The limitations of existing OS designs have led many de-
velopers to favor an event-driven programming approach, in
which each concurrent request in the system is modeled as
a finite state machine. A single thread (or small number
of threads) is responsible for scheduling each state machine
based on events originating from the OS or within the ap-
plication itself, such as I/O readiness and completion notifi-
cations.

Event-driven systems are generally built from scratch
for particular applications, and depend on mechanisms not
well-supported by most operating systems. Because the
underlying OS is structured to provide thread-based con-
currency using blocking I/O, event-driven applications are
at a disadvantage to obtain the desired behavior over this
imperfect interface. Consequently, obtaining high perfor-
mance requires that the application designer carefully man-
age event and thread scheduling, memory allocation, and
I/O streams [4, 9, 10, 21]. This “monolithic” event-driven
design is also difficult to modularize, as the code imple-
menting each state is directly linked with others in the flow
of execution.

Nonblocking I/O is provided by most OSs, but these
interfaces typically do not scale well as the number of
I/O flows grows very large [2, 14, 18]. Much prior work
has investigated scalable I/O primitives for servers [2, 5,
13, 16, 22, 23, 25], but these solutions are often an af-
terthought lashed onto a process-based model, and do not
always perform well. To demonstrate this fact, we have
measured the performance of the nonblocking socket inter-
face in Linux using the/dev/poll [23] event-delivery
mechanism, which is known to scale better than the stan-
dard UNIX select()andpoll() interfaces [14]. As Figure 1
shows, the performance of the nonblocking socket layer de-
grades when a large number of connections are established;
despite the use of an efficient event-delivery mechanism,
the underlying network stack does not scale as the number
of connections grows large.



Appears inProceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS VIII), May, 2001. 3

0

25

50

75

100

125

150

175

200

225

250

1 4 16 64 256 1024 4096 16384

B
an

dw
id

th
, M

bi
t/s

ec

�

Number of connections

(Can’t run beyond 400 connections)

Using nonblocking sockets and /dev/poll
Using blocking sockets and threads

Figure 1: Linux socket layer performance: This graph shows
the aggregate bandwidth through a server making use of either
asynchronous or blocking socket interfaces. Each client opens a
connection to the server and issues bursts of 1000 8 KB packets;
the server responds with a single 32-byte ACK for each burst. All
machines are 4-way Pentium III systems running Linux 2.2.14 in-
terconnected by Gigabit Ethernet. Two implementations of the
server are shown: one makes use of nonblocking sockets along
with the/dev/poll mechanism for event delivery, and the other
emulates asynchronous behavior over blocking sockets by using
threads. The latter implementation allocates one thread per socket
for reading packets, and uses a fixed-size thread pool of 120
threads for writing packets. The threaded implementation could
not support more than 400 simultaneous connections due to thread
limitations under Linux, while the nonblocking implementation de-
grades somewhat due to lack of scalability in the network stack.

3. The Staged Event-Driven Architecture

In this section we propose a structured approach to event-
driven programming that addresses some of the challenges
of implementing Internet services over commodity operat-
ing systems. This approach, thestaged event-driven archi-
tecture(SEDA) [30], is designed to manage the high con-
currency and load conditioning demands of these applica-
tions.

3.1. SEDA Design

As discussed in the previous section, the use of event-
driven programming can be used to overcome some (but
not all) of the shortcomings of conventional OS inter-
faces. SEDA refines the monolithic event-driven approach
by structuring applications in a way which enables load con-
ditioning, increases code modularity, and facilitates debug-
ging.

SEDA makes use of a set of design patterns, first de-
scribed in [32], which break the control flow of an event-
driven system into a series ofstagesseparated byqueues.
Each task in the system is processed by a sequence of stages
each representing some set of states in the traditional event-
driven design. SEDA relies upon asynchronous I/O prim-

Event Handler

Thread Pool

Outgoing
Events

Event Queue

Controller

Figure 2:A SEDA Stage:A stage consists of anincoming event
queue, a thread pool, and an application-suppliedevent handler.
The stage’s operation is managed by thecontroller, which adjusts
resource allocations and scheduling.

itives that expose I/O completion and readiness events di-
rectly to applications by placing those events onto the queue
for the appropriate stage.

A stage is a self-contained application component con-
sisting of anevent handler, an incoming event queue, and
a thread pool, as shown in Figure 2. Each stage is man-
aged by acontroller which affects scheduling and resource
allocation. Threads operate by pulling events off of the
stage’s incoming event queue and invoking the application-
supplied event handler. The event handler processes each
task, and dispatches zero or more tasks by enqueuing them
on the event queues of other stages. Figure 3 depicts a sim-
ple HTTP server implementation using the SEDA design.

Event handlers do not have direct control over queue op-
erations and threads. By separating core application logic
from thread management and scheduling, the stage’s con-
troller is able to manage the execution of the event handler
to implement various resource-management policies. For
example, the number of threads in the stage’s thread pool is
adjusted dynamically by the controller, based on an obser-
vation of the event queue and thread behavior. Details are
beyond the scope of this paper; more information is pro-
vided in [30].

3.2. SEDA Benefits

The SEDA design yields a number of benefits which di-
rectly address the needs of Internet services:

High concurrency: As with the traditional event-driven
design, SEDA makes use of a small number of threads to
process stages, avoiding the performance overhead of us-
ing a large number of threads for managing concurrency.
The use of asynchronous I/O facilitates high concurrency by
eliminating the need for multiple threads to overlap pending
I/O requests.

In SEDA, the number of threads can be chosen at a
per-stage level, rather than for the application as a whole;
this approach avoids wasting threads on stages which do
not need them. For example, UNIX filesystems can usu-
ally handle a fixed number (between 40 and 50) concurrent
read/write requests before becoming saturated [6]. In this
case there is no benefit to devoting more than this number
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Figure 3:Staged event-driven (SEDA) HTTP server:The application is decomposed into a set ofstagesseparated byqueues. Edges
represent the flow of events between stages. Each stage can be independently managed, and stages can be run in sequence or in parallel,
or a combination of the two. The use of event queues allows each stage to be individually load-conditioned, for example, by thresholding
its event queue.

of threads to a stage which performs filesystem access. To
shield the application programmer from the complexity of
managing thread pools, the stage’s controller is responsi-
ble for determining the number of threads executing within
each stage.

Application-specific load conditioning: The use of ex-
plicit event queues allows applications to implement load
conditioning policies based on the observation of pend-
ing events. Backpressure can be implemented by having
a queue reject new entries (e.g., by raising an error condi-
tion) when it becomes full. This is important as it allows
excess load to be rejected by the system, rather than buffer-
ing an arbitrary amount of work. Alternately, a stage can
drop, filter, or reorder incoming events in its queue to im-
plement other policies, such as event prioritization. During
overload, a stage may prioritize requests requiring few re-
sources over those which involve expensive computation or
I/O. These policies can be tailored to the specific applica-
tion, rather than imposed by the system in a generic way.

Code modularity and debugging support: The SEDA
design allows stages to be developed and maintained inde-
pendently. A SEDA-based application consists of a network
of interconnected stages; each stage can be implemented as
a separate code module in isolation from other stages. The
operation of two stages is composed by inserting a queue
between them, thereby allowing events to pass from one
to the other. This is in contrast to the “monolithic” event-
driven design, in which the states of the request-processing
state machine are often highly interdependent.

Few tools exist for understanding and debugging a com-
plex event-driven system, as stack traces do not represent
the control flow for the processing of a particular request.
SEDA facilitates debugging and performance analysis, as
the decomposition of application code into stages and ex-
plicit event delivery mechanisms provide a means for direct
inspection of application behavior. For example, a debug-
ging tool can trace the flow of events through the system and
visualize the interactions between stages. Our prototype of
SEDA is capable of generating a graph depicting the set of
application stages and their relationship.

4. Operating System Design Directions

While SEDA aids the construction of highly-concurrent
applications over conventional OS interfaces, these inter-
faces still present a number of design challenges for Internet
services. In particular, we argue that the goal of transpar-
ent resource virtualization is undesirable in this context, and
that server operating systems should eliminate this abstrac-
tion in favor of an approach which gives applications more
control over resource usage. This fundamental shift in ide-
ology makes it possible to implement a number of features
which support Internet services:

Concurrency and scheduling: Because SEDA uses a
small number of threads for driving the execution of stages,
much of the scalability limitation of threads is avoided. Ide-
ally, the code for each stage should never block, requiring
just one thread per CPU. However, for this approach to be
feasible every OS interface must be nonblocking. This is
unproblematic for I/O, but may be more challenging for
other interfaces, such as demand paging or memory syn-
chronization. The goal of a SEDA-oriented operating sys-
tem is not to eliminate threads altogether, but rather to sup-
port interfaces which allows their use to be minimized.

A SEDA-based OS should allow applications to specify
their own thread scheduling policy. For example, during
overload the application may wish to give priority to stages
which consume fewer resources. Another policy would be
to delay the scheduling of a stage until it has accumulated
enough work to amortize the startup cost of that work, such
as aggregating multiple disk accesses and performing them
all at once. The SEDA approach can simplify the mech-
anism used to implement application-specific scheduling,
since the concerns raised by “safe” scheduling in a multi-
programmed environment can be avoided. Specifically, the
system can trust the algorithm provided by the application,
and need not support multiple competing applications with
their own scheduling policies.

Scalable I/O: SEDA’s design should make it easier to
construct scalable I/O interfaces, since the goal is to sup-
port a large number of I/O streams through a single appli-
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cation, rather than to fairly multiplex I/O resources across
multiple applications. A SEDA-oriented asynchronous I/O
layer would closely follow the internal implementation of
contemporary filesystems and network stacks, but do away
with the complexity of safe virtualization of the I/O inter-
face. For example, rather than exporting a high-level socket
layer, the OS could expose the event-driven nature of the
network stack directly to applications. This approach also
facilitates the implementation of zero-copy I/O, a mecha-
nism which is difficult to virtualize for a number of reasons,
such as safe sharing of pinned network buffers [31].

Application-controlled resource management: A
SEDA-based operating system need not be designed to al-
low multiple applications to transparently share resources.
Internet services are highly specialized and are not designed
to share the machine with other applications: it is plainly
undesirable for, say, a Web server to run on the same
machine as a database engine (not to mention a scientific
computation or a word processor!). While the OS may
enforce protection (to prevent one stage from corrupting the
state of the kernel or another stage), the system should not
virtualize resources in a way which masks their availability
from applications.

For instance, rather than hiding a file system buffer cache
within the OS, a SEDA-based system should expose a low-
level disk interface and allow applications to implement
their own caching mechanism. In this way, SEDA fol-
lows the philosophy of systems such as Exokernel [12],
which promotes the implementation of OS components as
libraries under application control. Likewise, a SEDA-
based OS should expose a virtual memory interface which
makes physical memory availability explicit; this approach
is similar to that of application-controlled paging [7, 8].

5. Related Work

The SEDA design was derived from approaches to man-
aging high concurrency and unpredictable load in a vari-
ety of systems. The Flash web server [21] and the Harvest
web cache [4] are based on an asynchronous, event-driven
model which closely resembles the SEDA architecture. In
Flash, each component of the web server responds to par-
ticular events, such as socket connections or filesystem ac-
cess requests. The main server process is responsible for
continually dispatching events to each of these components.
This design typifies the “monolithic” event-driven architec-
ture described earlier. Because certain I/O operations (in
this case, filesystem accesses) do not have asynchronous in-
terfaces, the main server process handles these events by
dispatching them tohelper processesvia IPC.

StagedServer [15] is a platform which bears some re-
semblance to SEDA, in which application components are
decomposed into stages separated by queues. In this case,
the goal is to maximize processor cache locality by care-
fully scheduling threads and events within the application.
By aggregating the execution of multiple similar events

within a queue, locality is enhanced leading to greater per-
formance.

The Click modular packet router [19] and the Scout op-
erating system [20] use a software architecture similar to
that of SEDA; packet processing stages are implemented by
separate code modules with their own private state. Click
modules communicate using either queues or function calls,
while Scout modules are composed into apath which is
used to implement vertical resource management and in-
tegrated layer processing. Click and Scout are optimized
to improve per-packet latency, allowing a single thread to
call directly through multiple stages. In SEDA, threads are
isolated to their own stage for reasons of safety and load
conditioning.

Extensible operating systems such as Exokernel [12] and
SPIN [3] share our desire to expose greater resource con-
trol to applications. However, these systems have primarily
focused on safe application-specific resource virtualization,
rather than support for extreme concurrency and robustness
to load. Our proposal is in some sense more radical than ex-
tensible operating systems: we claim that the right approach
to supporting scalable servers is to eliminate resource virtu-
alization, rather than to augment it with application-specific
functionality.

6. Conclusion

We argue that traditional OS designs, intended primar-
ily for safe and efficient multiprogramming, do not mesh
well with the needs of highly-concurrent server applica-
tions. The large body of work that has addressed aspects
of this problem suggests that the ubiquitous process model,
along with the attendant requirement of transparent resource
virtualization, is fundamentally wrong for these applica-
tions. Rather, we propose thestaged event-driven architec-
ture, which decomposes applications into stages connected
by explicit event queues. This model enables high concur-
rency and fine-grained load conditioning, two essential re-
quirements for Internet services.

We have implemented a prototype of a SEDA-based sys-
tem, described in [30]. Space limitations prevent us from
providing details here, although our experience with the
SEDA prototype (implemented in Java on top of UNIX in-
terfaces) has demonstrated the viability of this design for
implementing scalable Internet service applications over
commodity OSs. Still, Internet services necessitate a fun-
damental shift in operating system design ideology. We be-
lieve that the time has come to reevaluate OS architecture in
support of this new class of applications.
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