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User-level network interfaces allow applications direct access to the network without operating system inter-
vention on every send and receive. Messages are transferred directly to and from user-space by the network
interface while observing the traditional protection boundaries between processes. Current user-level network
interfaces limit this message transfer to a per-process region of permanently-pinned physical memory to allow
safe DMA. This approach is inflexible in that it requires data to be copied into and out of this memory region,
and does not scale to a large number of processes.

This paper presents an extension to the U-Net user-level network architecture (U-Net/MM) allowing messages
to be transferred directly to and from any part of an application’s address space. This is achieved by integrating
a translation look-aside buffer into the network interface and coordinating its operation with the operating sys-
tem’s virtual memory subsystem. This mechanism allows network buffer pages to be pinned and unpinned
dynamically. Two implementations of U-Net/MM are described, demonstrating that existing commodity hard-
ware and commercial operating systems can efficiently support the architecture.

1 Introduction

Recent research in high-speed network interfaces for commodity networks has focused on removing the operating
system from the critical path for sending and receiving messages. An effective solution is to provide user-level mes-
saging [1,2,3,9,11,13,14,15] where the network interface (NI) is virtualized by multiplexing physical network
resources among multiple processes. This allows applications to communicate directly with the NI and messages can
be sent from and received to user-space without kernel intervention. The communication overheads are thus reduced
to the costs of passing commands and data between the main CPU and the NI.

Previous work on user-level networking has demonstrated that it can provide low latencies along with full utiliza-
tion of the available network bandwidth with relatively small messages. One of the main implementation difficulties
is managing the mapping between the virtual addresses of message buffers specified by applications and the physical
addresses required for actual transmission and reception. This includes two major components: the NI must be able to
translate the virtual addresses to physical addresses and the translations must be coordinated with the operating sys-
tem’s virtual memory subsystem.

So far, two solutions have been proposed which more or less side-step the issue. Custom designs appropriate for
“next generation” systems have integrated the NI into the virtual-address side of the system where it shares or repli-
cates the CPU’s TLB [1,11,14]. Less aggressive proposals allocate a physically-contiguous buffer region for each
application and pin it down to physical memory [2,3,12,15]. The application specifies message buffers using offsets
into the buffer region which the network interface can easily bounds-check and translate. This prevents the NI from
issuing illegal DMA accesses because the virtual to physical mapping is fixed.

The work presented here addresses the memory management issues on commodity processors and networks where
the network interfaces reside on the physical-address side of the system (typically the I/O bus) and are independent of
the processor architecture. In these systems the NI transfers data to and from message buffers in main memory using
DMA which requires physical memory addresses. If applications are to interact with the NI directly, the latter must
incorporate some form of address translation. Moreover, for portability reasons, it is desirable that the address trans-
lation be independent of the host processor architecture, especially the host’s page table representation. This pre-
cludes the type of solutions used in parallel machines with custom networks and NIs on the system bus or even
integrated on the CPU chip.

The major contribution of this paper is two-fold: 

• It describes a user-level NI design that incorporates a TLB into the NI to overcome the limitations of pinned-down
communication buffers. Applications can use arbitrary virtual memory addresses for message sends and receives
and only the pages covered by the NI TLB are locked down. The total memory reserved for the network is prima-
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rily a function of the TLB size and not of the number of processes running.
• It compares two complete implementations of the design, the first using custom firmware for an i960 co-processor

in the NI and the second using a simpler NI and fast traps into the kernel. The implementations span the design
space and offer a good understanding of the issues involved in integrating a TLB into the NI.
The remainder of this paper is organized as follows. The motivation for incorporating memory management into

the network interface is presented in Section 2 and related work is discussed in Section 3. Section 4 introduces the
new U-Net/MM network interface architecture and Section 5 describes the two implementations which are then
benchmarked in Section 6. Section 7 discusses the design space and concludes the paper.

2 Motivation

Kernel-based networking architectures have centralized control of the network buffers and these are shared by all
applications. The buffer pool is roughly proportional in size to the bandwidth of the network and is typically preallo-
cated and pinned to physical memory so that the network interface can asynchronously transfer data to and from these
buffers. In the case of user-level networking, the network buffers are part of the user address space and can no longer
be shared. Most user-level network implementations continue to pin the pages used for network buffers which implies
that the total amount of memory dedicated for communication grows not only with the network bandwidth but also
with the number of applications accessing the network.1 While only very few applications can simultaneously make
significant use of the network, a typical UNIX workstation has dozens of processes with open network connections,
most of which are sleeping at any given point in time.

The benefits of paging network buffers are twofold: (i) it increases scalability in the number of concurrent network
applications by allowing buffers belonging to inactive applications to be paged out, and (ii) it enables zero-copy mes-
saging by allowing applications to send from and receive into arbitrary virtual addresses as opposed to current imple-
mentations that require an extra copy of data from the application data structures to the pinned network buffer area.
While conceptually simple, this solution raises two major issues: (i) since the NI accesses network buffers asynchro-
nously, the virtual memory mapping operations performed by the kernel need to be coordinated with the NI operation,
and (ii) the effect of paging network buffers on application performance and communication reliability needs to be
examined.

From an architecture point of view, this work explores the design space of network interfaces. Previous-generation
commodity network interfaces were simple DMA engines on the I/O bus. With the increasing complexity of high
speed networks, network interfaces are becoming more sophisticated and routinely include an on-board co-processor,
although such co-processors usually lag behind the host CPU in performance. This raises the question of how much
functionality should be implemented in the NI itself and how much should be relegated to the faster host. Shared-
memory multiprocessors suggest an alternate design point where one of the processors can be dedicated to managing
a “dumb” NI and performing some protocol processing [10][14]. This paper proposes an intermediate model which
transfers just enough intelligence into the NI to do message mux/demux and virtual address translation, thereby
enabling scalable, zero-copy messaging. 

3 Related Work

Various techniques have been used to address memory-management issues in the context of user-level networking.
They range from closely coupling the NI with the processor TLB to incorporating a TLB in the NI. Other approaches
have used operating system assisted dynamic remapping of network buffers to the address space of user processes.
The following paragraphs briefly discuss some of the previous work in this area and how it relates to the U-Net/MM
architecture.

In the StarT [1], FLASH [11] and Typhoon [14] architectures, the NI is attached to the memory bus and shares the
TLB with the host processor. As a result, the NI is capable of virtual-to-physical address translations. The network
interfaces in these architectures also include a protocol processor. The Meiko CS-2 [9] NI incorporates a TLB that is
used for translating virtual address to physical DMA addresses at the time of message sends and receives as well as a
protocol processor. The U-Net/MM architecture is similar to the Meiko CS-2 in that it incorporates a TLB in the NI.
However, all these architectures involve custom hardware implementations for high-performance networks in parallel

1. In a multiprogrammed environment it is not unreasonable for applications to allocate enough buffers to prevent buffer overrun
while another process is running. At now-common network rates of over 100Mbit/s, a megabyte of receive buffers can be filled
in under 100ms which corresponds to only a few time-slices. 
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machines while U-Net adapts off-the-shelf network interfaces and commodity networks. This paper focuses on the
interaction between the virtual memory subsystem and commodity NI hardware and examines alternatives that do not
require hardware innovation.

An alternative approach used by some other architectures [2,7] uses commodity network interfaces and uses spe-
cialized operating system support to dynamically remap network buffers to address spaces of user-level processes. A
major optimization in the fbufs [7] approach assumes that pages from only a limited range of user virtual memory can
be remapped while in the case of SHRIMP [2], any region in the user virtual memory can be used as a network buffer
but must be explicitly pinned down in physical memory using special system calls. In contrast, the U-Net/MM archi-
tecture allows applications to send from and receive into any area in their virtual address space without having to
explicitly pin down any virtual memory region.

4 The U-Net/MM Architecture

U-Net/MM is an extension of the U-Net user-level networking architecture [15]. It consists of three main building
blocks shown in 1 endpoints serve as an application’s handle into the network and contain three message queues
which hold descriptors for message buffers that are to be sent, that are free for reception, and that have been received.
Each process that wishes to access the network first creates one or more endpoints, each with an associated set of
message queues. Communication to and from an endpoint uses message tags to uniquely identify network sources
and destinations. The NI uses these tags to verify the destination address of outgoing messages as well as demultiplex
incoming messages to the appropriate endpoint. The exact form of a message tag depends on the network substrate —
for example, for ATM networks, virtual channel identifiers (VCIs) may be used. An application registers the message
tags with U-Net before sending or receiving messages— an operating system service is needed to assist the applica-
tion in determining the correct tag to use based on the destination process and the route between the two communicat-
ing nodes.

In order to send, a process composes a message in one or
more transmit buffers in its address space and pushes a descrip-
tor onto the send queue. The descriptor contains pointers to the
transmit buffers, their lengths and a destination tag. The network
interface picks up the descriptor, translates the destination tag
into a network header and the virtual buffer addressing to physi-
cal DMA addresses. It then transfers the data directly from the
user-space buffer into the network.

When the NI receives data it examines the message header
and matches it with the message tags to determine the correct
destination endpoint. The NI then pops free buffer descriptors
off the appropriate free queue, translates the virtual addresses,
transfers the data into the buffers, and enqueues a descriptor
onto the right receive queue. Applications can detect the arrival
of messages by polling the receive queue, by blocking until a
message arrives (e.g., a UNIX select system call), or by receiv-
ing an asynchronous notification on message arrival (e.g., a sig-
nal). As an optimization, small messages (typically below 56
bytes) may be stored entirely within receive queue descriptors.

Unlike U-Net/MM, the original U-Net architecture does not allow use of arbitrary message buffers. Each endpoint
is associated with a buffer area that is pinned to contiguous physical memory and holds all buffers used with that end-
point. Message descriptors contain offsets into the buffer area (instead of full virtual addresses) which are bounds-
checked and added to the physical base address of the buffer area by the NI.

4.1 Address translation

In order to handle arbitrary user-space virtual addresses, the U-Net/MM design incorporates a Translation Look-
aside Buffer (which is not directly visible from user-space) and mechanisms to handle TLB misses and TLB coher-

Figure 1: U-Net building blocks. Endpoints serve
as an application’s handle into the network,
buffer areas are regions of memory that hold
message data, and message queues
(send/recv/free queues) hold descriptors for
messages that are to be sent or that have been
received.
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ency issues. The U-Net/MM design itself is independent of any specific hardware platform and includes two new
components:
• a TLB for address translations,
• a kernel module for servicing TLB misses and unpinning page frames corresponding to invalid NI TLB entries.

The TLB is maintained by the network interface itself and maps <process ID, virtual address> pairs to physical
page frames and read/write access rights. Whenever a physical page frame has an entry in the NI TLB, it is consid-
ered to be mapped into the corresponding endpoint, and the NI assumes that it is available for DMA operations.

During a transmit operation, the NI attempts to translate the virtual address of the send-buffer by doing a TLB
lookup. In the case of a TLB hit, the transmission proceeds using the resulting physical address for DMA. In the case
of a TLB miss, the NI requests a translation from the host kernel. If the page is in memory, the kernel returns the cor-
responding physical address and the NI completes the transmission. In the case of a privilege violation the kernel
informs the NI, which propagates the error to the send completion status in the U-Net transmit queue. If the page is
not memory-resident, the kernel initiates a page-in and notifies the NI to defer the transmission. The NI then suspends
the processing of the affected endpoint until the page fault is resolved.

Message reception is complicated by the potential problems caused by TLB misses. In order to minimize receive
overheads, the NI pre-translates a number of entries in each free buffer queue. When a message arrives, the NI pops a
pre-translated buffer address from the appropriate free queue and initiates a DMA transfer into main memory. If no
pre-translated buffer is available, the message may be dropped. On receiving a translation request for a receive buffer
that has been paged out, the kernel initiates a page-in and notifies the NI. If the page-in is not complete by the time
the buffer is needed for message reception, the NI can skip the affected buffer and return it to the application unfilled.
Thus, this mechanism avoids stalling receive processing for the endpoint in question.

4.2 TLB Consistency

The interaction of the NI TLB with the virtual memory system is rather involved. The overriding concern in the
design was to find the right model for maintaining consistency between the NI TLB and the virtual memory system.
Since it is difficult to convince vendors to change commercial operating systems, the U-Net/MM architecture uses
existing operating system structures and avoids adding new functionality to the virtual memory system.

One approach to TLB consistency in U-Net/MM is to treat the NI as another processor on the bus and use the same
TLB coherency mechanisms used in shared memory multiprocessor (SMP) operating systems, in which the host ker-
nel informs all processors of TLB invalidations when pages are unmapped. This mechanism is inappropriate as the NI
performs page translations in a manner which is very different from the way a processor uses its TLB. In the SMP
case, the TLB translates addresses on every memory access and invalidating a mapping in the middle of an instruc-
tion sequence which is using the mapping only has a minor performance impact. In contrast, the NI uses its TLB to
set-up a DMA transfer which can last as long as it takes to transmit or receive a message. This implies that DMA
transfers must be atomic relative to TLB invalidations (just as instructions are) which is infeasible because message
reception time may not be bounded1. Dividing a DMA transfer into bursts, making each burst atomic, and allowing
TLB invalidations in between bursts is not advisable either because a TLB miss in the middle of a message being
received is likely to cause the message tail to be dropped and for outgoing messages the transmitter cannot necessar-
ily be stalled without corrupting the packet. Finally, if the NI acts as a processor it must simulate reference bits used
for page aging and no simple solution could be found for this problem. 

The basic idea underlying the consistency mechanism for the U-Net/MM architecture is to view the NI as another
process which shares the set of network buffer pages used by the processes. Pages for which the NI TLB has a valid
mapping are pinned down by incrementing a reference count in the page descriptors. The host kernel can impose an
upper bound on the amount of memory pinned down in this fashion by limiting the number of valid entries in the NI
TLB. This is somewhat analogous to preallocating and pinning a fixed-size buffer pool in kernel-based network
stacks, the difference being that in the U-Net/MM case the set of pages in the buffer pool can vary with time.

The operation of the kernel module for U-Net/MM is as follows. On receiving a translation request from the NI, the
kernel walks the page tables to establish the translation, the page is pinned (assuming it is present), and the physical
address is returned to the NI. The kernel performs a copy-on-write if the NI requests a write-translation for a page that
is read-only and translation requests for non-present pages cause a page-in to be initiated. When the NI evicts a page
from the TLB, it notifies the kernel, which unpins the page by decrementing the reference count in the page descriptor
and makes it available for swapping once more. The NI avoids evicting a page for which message transmission or

1. For example, the cells of an ATM AAL5 PDU can arrive at an arbitrarily slow rate.
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reception is in progress in order to prevent illegal DMA accesses. In contrast to SMP cache coherence schemes, the
kernel never requests a TLB mapping to be invalidated in the NI TLB (when an endpoint is closed, the NI invalidates
the TLB entries held by that endpoint).

5 U-Net/MM Implementations

This section describes two implementations of the U-
Net/MM architecture. The first uses a 155Mbps FORE
Systems PCA-200 PCI ATM network interface which con-
tains a programmable i960 processor and is hosted in a
133Mhz Pentium workstation running Linux v1.3.71. The
second implementation uses a non-programmable Fast
Ethernet interface with a DECchip 21140 controller and the
same workstation running Windows NT 4.0 as host.
Figure 2 depicts block diagrams of the two implementa-
tions which are described in detail in the next subsections.

5.1 PCA200/Linux implementation

The PCA-200 contains a 25 MHz i960 processor, 256
Kbytes of RAM, a DMA-capable PCI bus interface, a sim-
ple FIFO interface to the 155Mpbs (OC3) ATM fiber and
an AAL5 CRC generator. U-Net/MM is implemented
directly in the firmware of the i960 and in the Linux kernel.
The i960 holds a data structure for each open endpoint
pointing to the send and free queues allocated in i960 mem-
ory and the receive queue allocated in host memory. All
queues are mapped into applications’ address spaces which
communicate with the i960 by directly writing to or read-
ing from the queues.

The i960 firmware implements a two-level TLB consist-
ing of a 1024-entry direct mapped primary table and a fully
associative 16-entry secondary “victim cache”. The latter
uses a FIFO replacement policy and a mapping evicted
from it is returned to the kernel for unpinning.

Pages are pinned using a reference count which the Linux kernel associates with each page frame to indicate the
number of processes sharing it. This reference count is only decremented if the page is removed from a process’ vir-
tual address space by the swapper task or through explicit unmapping. When it drops to zero, the page becomes a
page-out candidate. U-Net/MM increments this reference count whenever the NI requests a translation for the page.
The kernel does not maintain any page tables for the NI and thus the swapper cannot decrement the reference count of
pages mapped by the NI TLB to zero. This ensures that they cannot be paged-out or otherwise unmapped until the NI
removes the entry from its TLB and notifies the kernel which then decrements the reference count.

5.1.1 TLB miss handling

In case of TLB misses, the NI requests page translations from the kernel through a translation-request queue. If a
victim-cache entry is to be evicted to make room for a new translation the request also indicates the page to unpin.
The NI interrupts the kernel to service the queue and busy-waits until a mapping is returned.

To satisfy a page translation request from the NI, the kernel walks the page tables of the process owning the end-
point. If a present page exists, the kernel increments its reference count and returns the physical address to the NI
immediately (in the case of read-access requests) or performs a copy-on-write operation (in the case of write-access
requests to shared pages). In this way, a read or write translation by the NI is considered to be a read or write opera-
tion by the process owning the corresponding endpoint, allowing page-sharing and protection semantics to be pre-
served.

If the NI requests a translation for read access to a non-resident page the kernel immediately informs the NI that the
translation will be deferred, and initiates the page-in from disk. Because page-ins cannot be initiated from within the

Figure 2: Block diagrams of two U-Net/MM implementations.

a) PCA-200/Linux implementation

b) DC21140/WindowsNT implementation
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interrupt handler, an in-kernel thread is signalled to handle the page-in and provide the eventual mapping to the NI.
This thread is placed at the head of the run queue so it starts immediately after the interrupt handler returns. While the
faulted translation is pending, the NI is free to poll other endpoints for transmission or to service incoming messages.

The current implementation makes the simplifying assumption that all receive buffers are page-aligned and page-
sized. This allows the handling of page faults during receive-buffer translation to be handled by allocating a new zero
page and mapping it into the process address space, instead of reading the missing page from disk.

5.2 DC21140/WinNT implementation

The Fast Ethernet network interface is based on the DECchip 21140 Fast Ethernet controller. The DC21140 is a
PCI bus master capable of transferring complete frames to and from host memory via DMA and includes an Ethernet
CRC generator/checker. The chip maintains a single set of circular send and receive rings containing descriptors
pointing to buffers in host memory. The design of the DC21140 assumes that a single operating system agent will
multiplex access to the hardware. Therefore, U-Net/MM must be largely implemented in the kernel where it multi-
plexes among multiple applications and translates from virtual to physical addresses.

The in-kernel implementation of U-Net is best thought of as sharing the physical CPU hardware between the regu-
lar host computation tasks and the new NI task. A fast kernel trap services the U-Net transmit queue in a manner sim-
ilar to the i960 in the ATM implementation and an interrupt handler is triggered by the DC21140 when network
packets arrive. The trap and interrupt handlers act as a protected co-routine that allows a portion of main processor
time to be allocated to servicing U-Net.

The NI TLB is implemented in software in the kernel and has the same structure as the TLB in the PCA-200/Linux
implementation. In order to send a message, the application stores a descriptor into the U-Net send queue and issues a
fast trap into the kernel U-Net service routine. This trap is implemented as an x86 trap gate and does not incur the
overhead of a complete system call. The service routine traverses the queue and, for each entry, translates the buffer
address and pushes corresponding descriptors onto the DC21140 send ring. After all descriptors have been pushed
onto the device transmit ring, the service routine issues a transmit poll demand to the DC21140 which initiates the
actual transmission. The service routine also monitors the U-Net free buffer queue and pre-translates addresses as
needed to avoid a TLB miss at receive time.

Upon packet reception the DC21140 transfers the data into kernel buffers pointed to by the device’s receive ring.
These are fixed buffers allocated in the kernel and are used in FIFO order by the DC21140. The DC21140 generates
an interrupt, the service routine determines the destination endpoint, fetches a free U-Net buffer, translates the
address, copies the data into the buffer, and enqueues an entry in the user receive queue.

5.2.1 TLB miss handling

The kernel module services TLB misses using two functions exported by the Windows NT memory manager:
MmProbeAndLockPages pins pages and MmUnlockPages unpins them. These functions are designed to support con-
ventional I/O, which poses some challenges because MmProbeAndLockPages can only operate on pages of the cur-
rently-running process and cannot be executed within an interrupt context. This implies that a separate in-kernel
thread cannot be used to monitor and prefetch free buffer pages; instead, this operation must be performed in the fast
trap for the corresponding endpoint.

Entries evicted from the victim cache are unpinned by a call to MmUnlockPages, which can be invoked in the con-
text of any running process. Evictions pose a problem with transmit buffers: once a buffer is enqueued on the transmit
ring, its TLB entry cannot be evicted from the TLB victim cache until the transmit has completed without risking ille-
gal DMA accesses. This situation is handled by implementing the victim cache as a linked-list which can grow to
hold an arbitrary number of such pending entries. Whenever a TLB entry is pushed to the victim cache a cleanup rou-
tine is invoked to shrink the victim cache if it is over a certain size.

6 Performance

The performance measurements presented in this section serve two purposes: to determine whether the new address
translation features in U-Net/MM add a measurable overhead to the critical path, and to establish the cost incurred in
the case of TLB misses. In addition, a trace-driven simulation of application behavior provides a first insight into the
frequency of TLB misses in unmodified parallel applications as well as in a simple Unix workload.

In addition to the two U-Net/MM implementations described in the previous section, three conventional U-Net
implementations without memory management in the NI were timed: a PCA-200 [18] and a DC21140 [17][18]
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implementation using Linux as well as a DC21140 implementation using Windows NT. In all three implementations
a permanently pinned buffer area is associated with each endpoint and the applications specify all buffer addresses as
offsets relative to the buffer area.

6.1 Raw operation times

In order to determine the cost of individual operations in the U-Net implementations the code was instrumented
using the Pentium cycle counters to time small sections of kernel code and an oscilloscope was placed on the PCI bus
to observe DMA transfers1. The results are shown in Table 1. All measurements were taken on a 133Mhz Pentium
system with a 33Mhz PCI bus.

In the case of U-Net/PCA-200 the only relevant timings are the times taken by the i960 to handle the transmit and
receive queues as well as the associated DMA transfers. The U-Net/MM version on the same hardware and OS adds
only 1-2µs in the case of a TLB hit. TLB misses, on the other hand cause on the order of 50µs to 100µs of delay (as
long as no disk access is required): the translation request and reply handshake between NI and kernel, the interrupt
overhead, and the time to pin and unpin a page account for almost 50µs. If the page contents must be copied or zeroed
the overhead roughly doubles.

The implementations using the DC21140 do not incur any of the NI-kernel coordination overheads for memory
management and the use of the faster host processor reduces the overheads considerably (although the main CPU is
employed, not a separate co-processor.) The cost of the custom fast-traps into the kernel is surprisingly low, with
Linux faster than NT due to the trap complexity. A further surprise is that receive buffer copy times (shown for 40
and 1498-byte messages) under Linux are half those of NT.

Overall the cost of memory management operations in Linux and NT are very comparable, although the Linux
page-pinning routines have been custom-designed while under NT standard kernel routines were employed. One
notable difference is the time to process a non-present write-page translation: under the PCA-200 implementation,
receive buffers are assumed to be page-aligned, so the page fault can be avoided by simply mapping in a new zero

1. Measurements were made by observing the PCI FRAME# and REQ# signals on the PCA-200, watching both regular and spe-
cially added “dummy” DMA accesses.
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Table 1:  Overheads of message transmission and reception with and without address translation in the NI. 
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page. As multiple receive buffers may share a page in the DC21140 implementations (due to the MTU of Fast Ether-
net) this optimization cannot be used.

6.2 Application Behavior

To obtain a preliminary characterization of the NI TLB behavior in the U-Net/MM architecture, a set of Split-C [4]
benchmarks and the Linux kernel socket layer were instrumented to record message transmit and receive activity, the
results of which were input to a simulation of the U-Net/MM TLB.

The Split-C language allows processes to access remote data by using global pointers — a virtual address coupled
with a process identifier. Dereferencing a global pointer allows a process to read or write data in the address spaces of
other processes that are part of the parallel application. Split-C is implemented over Active Messages [16], a low-
overhead RPC mechanism which provides reliable communication. 

The Split-C benchmark suite consists of four programs: a blocked matrix multiply, a radix sort and a sample sort
optimized for small message transfers and the same sample sort optimized for large message transfers. The matrix
multiplication was run twice, once using matrices of 8 by 8 blocks with 128 by 128 double floats in each block and
once using 16 by 16 blocks with 16 by 16 double floats in each block. The radix and sample sort benchmarks sort an
array of 32-bit keys over all nodes with 256K keys per node.

The Linux kernel sockets layer was instrumented to record buffer address and length for all stream and datagram
socket send and receive operations, and traces captured for standard user interaction including telnet, rlogin, FTP and
X-Window application sessions. 

The TLB simulation results are shown on Figure 3 for 1024- and 256-entry direct-mapped primary TLBs each with
a 16-entry fully-associative victim cache. 64 receive buffers, each of size 4Kb, are assumed. The number of non-com-
pulsory misses for all the applications is zero for a 1024-entry primary TLB, implying that this is large enough to
accommodate the mappings for all network buffer pages in a wide variety of applications. For the 256-entry TLB,
some applications still show good TLB performance because they either send mostly small messages from a single
page of 64-byte buffers (sample sort) or use a small number of pages as network buffers (only 82 pages are used by
matrix multiply). The other applications show some non-compulsory read and write misses when the TLB size goes
down to 256 entries. The Linux sockets trace includes a high number of receive compulsory misses which correspond
to 64 receive buffer pages being consumed for each of the 32 processes recorded.

7 Conclusion

The U-Net/MM architecture has been shown to efficiently support scalable, protected user-level communication
without the use of permanently-pinned memory segments. The architecture allows pages to be dynamically pinned

Figure 3: Simulated TLB performance for Split-C application benchmarks as well as for an interactive Linux workload.
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and unpinned from physical memory as required by the network interface. A Translation Look-aside Buffer imple-
mented in the NI handles mappings to these pages, and the OS kernel provides services to satisfy TLB translation and
eviction requests by the NI. As an added benefit, user processes are able to directly transmit data out of and receive
data into any region of their address space, enabling true zero-copy messaging. Two implementations of the U-
Net/MM architecture, on network interfaces both with and without a programmable co-processor, have highlighted
the performance trade-offs associated with the network interface design.

7.1 Use of a network co-processor

Experience with the PCA-200 implementations of U-Net and U-Net/MM point out various trade-offs in the NI
design space. The use of a programmable co-processor on the PCA-200 allows the NI to multiplex/demultiplex the
network directly without the use of a trusted agent running on the host CPU (as in the DC21140 case). While this is
clearly desirable for its reduction of main processor overhead, the NI must communicate with the kernel over the I/O
bus, which raises the overall message handling latency. Furthermore, “intelligent” NI designs often lag main proces-
sors in performance, as evidenced by the 25 MHz i960 used in the PCA-200.

The U-Net/MM implementation on the non-programmable DC21140 interface must employ protected co-routines
in the host kernel to mux/demux the hardware resources. While this increases CPU overhead, the use of the faster
host processor for page-translations as well as queue and buffer management in effect reduces overall overhead. 

The evident trade-off is between reducing main CPU overhead through use of a network co-processor and reducing
message latency with the memory-management system on the host. 

7.2 Zero-copy revisited

There are two distinct ways in which the networking layer can enable zero-copy messaging. The traditional
approach borrows from shared memory systems and allows the message sender to specify the memory address at the
destination in which to receive the message. In these systems, the destination virtual address specified by the applica-
tion is generally translated at the sender and the message carries the corresponding physical destination address. This
requires the memory management of the operating systems on communicating nodes to be coordinated. The analo-
gous operation for user-level messaging would be to carry a virtual destination address in the message which is trans-
lated by the receiving NI, thus decoupling the memory management systems of the communicating nodes.

U-Net/MM does not support such a model because carrying the destination address of the message data within the
message itself creates three problems: message format, security, and retransmission:
• the message headers must have a fixed format so that the network interface can extract the destination address,
• protection mechanisms must be able to prevent a malicious sender from overwriting arbitrary locations in the

receiver’s address space, and
• corrupted or retransmitted messages must be prevented from overwriting application data structures.

The zero-copy model provided by the U-Net/MM system avoids the above problems by receiving into user-desig-
nated free buffers. In this case, filled receive buffers can be used as long-lived data structures and new buffers may be
allocated in other portions of the user address space.

7.3 Future work

The U-Net/MM architecture does not currently address the issue of process scheduling. In traditional kernel-based
networking, the kernel is involved in every message receive and can coordinate process scheduling with network
activity. For example, processes part of a parallel computation should be co-scheduled to improve overall application
performance.

The U-Net/MM implementations described here represent two ends of the NI design spectrum: On one side, the
PCA-200 performs both, address translation and message multiplexing/demultiplexing in the network interface,
while on the other, the DC21140 relies on the host for both functions. An interesting intermediate point would be a
design which performs one of these operations directly on the NI, leaving the other to the host processor. The evalua-
tion presented here, suggests that it is desirable to perform message mux/demux on the NI directly to avoid buffer
copies on receive, while using the host processor to perform address translation reduces communication latency and
complexity.
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